

Le scienze cognitive del linguaggio

A CURA DI Antonino Pennisi Pietro Perconti

Le scienze cognitive del linguaggio

Le scienze cognitive del linguaggio indagano il modo specificamente umano in cui il linguaggio si connette con gli altri processi cognitivi. Il volume guida il lettore nei vari ambiti che costituiscono lo scenario della disciplina: dalla filosofia alla linguistica, dall'Intelligenza Artificiale alla psicologia, alla biologia fino alle patologie del linguaggio. Ne risulta una descrizione integrata del fenomeno linguistico che fa riferimento sia alla riflessione sull'evoluzione della capacità umana di parlare, sia alle più recenti scoperte scientifiche.

INDICE DEL VOLUME: Introduzione, di A. Pennisi e P. Perconti. - I. Filosofia della mente, di P. Perconti. - III. Biologia, linguaggio, evoluzione, di A. Falzone. - III. Linguistica cognitiva, di M. Mazzone. - IV. Linguaggio e memoria, di A. Velardi. - V. Modelli neuro-computazionali del linguaggio, di A. Plebe. - VI. Patologie e psicopatologie del linguaggio, di A. Pennisi. - Appendice, di G. Spitoni, A. Rapisarda e I. Minio Paluello. - Riferimenti bibliografici. - Indice analitico.

ANTONINO PENNISI insegna Filosofia del linguaggio nell'Università di Messina. Tra i suoi libri ricordiamo: Le lingue muttole. Le patologie del linguaggio tra teoria e storia» (1994) e «Psicopatologia del linguaggio. Teorie, analisi, filosofie della mente» (1998), pubblicati con Carocci. Per il Mulino ha curato «Patologie del linguaggio e scienze cognitive» (con R. Cavalieri, 2001).

PIETRO PERCONTI insegna Filosofia della mente nell'Università di Messina. Tra i suoi libri ricordiamo: «Leggere le menti» (Bruno Mondadori, 2003) e «E-mail filosofiche. Di grandi idee e problemi quotidiani» (con S. Morini, Cortina, 2006).

Linguistica

Le scienze cognitive del linguaggio

a cura di ANTONINO PENNISI PIETRO PERCONTI

Indice

Int	Introduzione, di Antonino Pennisi e Pietro Perconti			
ī.	Filosofia della mente, di Pietro Perconti		000	
	1.	La svolta linguistica	000	
		1.1. Filosofia ermeneutica	000	
		1.2. Filosofia analitica	000	
	2.	Dal linguaggio alla mente	000	
	3.	Indagine autonoma del pensiero	000	
		3.1. L'ipotesi della «core knowledge»	000	
		3.2. Gli altri animali	000	
		3.3. Gli infanti	000	
		3.4. Archeologia cognitiva	000	
	4.	Le funzioni cognitive non linguistiche indispensabili per il linguaggio	000	
		4.1. Il ruolo della lettura della mente nel linguaggio	000	
		4.2. La percezione nel linguaggio	000	
	5.	Funzione comunicativa e cognitiva	000	
	6.	Come vedono la mente i cognitivisti	000	
	7.	I limiti delle scienze cognitive (del linguaggio)	000	
		7.1. La coscienza	000	
		7.2. La normatività	000	
II.	Biologia, lii	guaggio, evoluzione, di Alessandra Falzone	000	
	1.	Biologia del linguaggio	000	
		1.1. Specificità morfologiche	000	
		1.2. Basi genetiche	000	
		1.3. Specificità etologiche	000	
	2.	Evoluzione del linguaggio	000	

000

6	INDIC	

	2.	Quanto i neuroni artificiali assomigliano a quelli veri	000
		1.2. Il calcolare del cervello	000
		1.1. Le difficoltà del computazionalismo come spiegazione	000
	1.	Spiegazioni dal computer	000
٧.	Modelli ne	urocomputazionali del linguaggio, di Alessio Plebe	000
		6.1. Il nesso parola-suggerimento	000
		Ontologia della memoria	000
	5.	Strutture e processi: i livelli di elaborazione	000
		4.3. Amnesia pura?	000
		4.2. La complessità della memoria	000
	4.	4.1. La memoria semantica	000
		La memoria di lavoro linguistica: il loop fonologico	000
		Amnesia e linguaggio: la conservazione dell'informazione verbale	000
		La priorità del mentale Una nuova concezione della memoria	000
			000
IV.	Linguaggi	o e memoria, di Andrea Velardi	000
		5.2. La lettura della mente	000
		5.1. Processi pragmatici e semantici	000
	5.	Pragmatica cognitiva	000
		4.2. La sintassi basata sull'uso	000
		4.1. La sintassi basata su costruzioni	000
	4.	Sintassi cognitiva	000
		3.3. L'organizzazione semantico-concettuale della frase	000
		3.2. Comprensione on-line del linguaggio	000
		3.1. Il sistema concettuale	000
	3.	Semantica cognitiva	000
		2.5. Sviluppi e problemi (II): l'innatismo riconsiderato	000
		2.4. Sviluppi e problemi (I): verso il minimalismo	000
		2.3. L'innatismo	000
		2.2. La cognizione e i processi psicologici inconsci	000
		2.1. Il linguaggio come sistema formale	000
		Lo sfondo chomskiano	000
	1.	Definizione del campo	000
III.	Linguistica	cognitiva, di Marco Mazzone	000
		3.2. Semantica e adattativita	000
		3.1. Teorie linguistico-evolutive 3.2. Semantica e adattatività	000
	5.	La mente biologica e la funzione adattativa del linguaggio	000
		2.2. Tecnica e linguaggio	000
		2.1. Paleoantropologia e paleoneurologia del linguaggio	000

იიი

Indice analitico

Introduzione

Le scienze cognitive sono una delle imprese più affascinanti del panorama culturale di oggi. Il loro programma di ricerca consiste nella descrizione del fenomeno della conoscenza in ogni sua forma. Si tratta di elaborare teorie su cosa accade quando vediamo i colori che ci stanno di fronte, sentiamo un certo profumo, ricordiamo la lista della spesa o prendiamo una decisione sulla base della probabilità che accordiamo a un certo avvenimento. È evidente che si tratta di obiettivi scientifici molto ambiziosi, il cui raggiungimento può contribuire addirittura alla comprensione della natura umana. Se un giorno sapremo davvero cosa vuol dire conoscere, in un senso sufficientemente ricco di questa espressione, allora avremo anche un'idea conseguente di cosa vuol dire essere creature umana.

Secondo gli scienziati cognitivi il raggiungimento di tali obiettivi teorici produce due importanti effetti. Da una parte possiamo aspettarci che via via che saremo in grado di descrivere il funzionamento dei vari processi cognitivi, saremo anche in grado di riprodurli artificialmente. Già oggi, per esempio, esistono programmi di dettatura vocale per computer abbastanza affidabili, resi possibili dai progressi delle conoscenze scientifiche sul fenomeno del riconoscimento vocale. Dall'altra parte, sapere cosa vuol dire conoscere e saper riprodurre i processi della conoscenza può consentire di elaborare modelli efficaci per la riabilitazione delle funzioni compromesses.

Le scienze cognitive sono un'impresa in cui confluiscono gli sforzi e le competenze di studiosi di formazione diversa, tra cui psicologi, filosofi, linguisti, esperti di intelligenza artificiale e antropologi. Il linguaggio in tale progetto è un'area centrale. Solo quando sapremo come fa il corpo umano a scambiarsi dei significati con altri corpi potremo affermare di aver compreso qualcosa di apprezzabile nel fenomeno della conoscenza. D'altra parte è ben noto che, per limitarsi soltanto alla tradizione culturale dell'Occidente, il linguaggio è un oggetto di riflessione da almeno un paio di millenni. Flosofi, poeti, medici e scienziati di ogni sorta hanno offerto le loro riflessioni sulla natura e il funzionamento del linguaggio. Occorre quindi chiedersi cosa ci sia di particolare nel modo in cui le scienze cognitive studiano il fenomeno linguistico e provare a isolarne alcuni aspetti. La caratteristica probabilmente più macroscopica della prospettiva cognitivista nello studio linguistico risiede nell'idea di «elaborazione delle informazioni». Così come vedere vuol dire elaborare informazioni visive e decidere vuol dire elaborare informazioni in vista dell'azione, allo stesso modo parlare vuol dire elaborare informazioni linguistiche, ossia trattare dei significati, generalmente in formato proposizionale, per gli scopi ordinari per cui il linguaggio viene impiegato, tra cui pensare, comunicare, persuadere e registrare. L'espressione «elaborare informazioni linguistiche» va intesa in senso specifico. Il modo in cui generalmente viene usato il verbo elaborare ha a che vedere con il calcolo, un genere di operazione che viene compreso sulla base di ciò che fanno i computer e che si suppone accada in modo analogo anche nel cervello umano. Le «informazioni» sono porzioni di materia che giocano un ruolo psicologico nella mente degli individui. Per comprendere cosa è una informazione occorre prendere in considerazione sia il suo lato psicologico, ovvero il fatto che essa svolge un certo ruolo in una economia mentale, sia il suo lato materiale, cioè il fatto che gioca un ruolo anche in una economia fisica e biologica, tipicamente in un organismo animale. La «linguisticità» delle informazioni, infine, è il risultato di certe caratteristiche del formato delle rappresentazioni, come la loro proposizionalità. Oltre a considerare il fenomeno linguistico come un processo di elaborazione di informazioni, le scienze cognitive del linguaggio sono caratterizzate anche da

altri due elementi, che ispirano questo volume in modo speciale. In primo luogo il linguaggio non viene considerato come qualcosa di autonomo, ma come un sistema cognitivo la cui elaborazione è mediata da altri processi. Si tratta di un aspetto che emerge chiaramente se si bada alla questione del significato. Gli approcci autonomistici allo studio del significato considerano quest'ultimo come qualcosa di indipendente dalle influenze extralinguistiche. Secondo questa idea per elaborare una buona teoria del significato non è necessario considerare il ruolo che i concetti, la percezione o le basi fisiologiche hanno nella formazione di cosa vuol dire una certa parola o una certa frase. Basta concentrarsi sulle relazioni intralinguistiche. Il significato sarebbe interamente specificabile dalla rete di relazioni con gli altri significati. Le scienze cognitive del linguaggio rifiutano tale approccio e, tra tutte le influenze extralinguistiche, privilegiano il ruolo di quelle mentali. Per uno scienziato cognitivo interessato al linguaggio è importante la plausibilità psicologica delle rappresentazioni e questa sembra avere a che fare, oltre che con le relazioni interne al sistema linguistico, con una serie di abilità cognitive non interamente linguistiche come la percezione, la categorizzazione, eccetera. Studiare il linguaggio nelle scienze cognitive vuol dire innanzi tutto rendersi conto che parlare, scrivere e conversare sono modi in cui gli esseri umani articolano la propria conoscenza. Studiare il linguaggio vuol dire studiare un pezzo della mente. Ogni tentativo di segregare l'elaborazione linguistica dal resto dei processi cognitivi equivale a voler studiare come nuotano i pesci senza considerare l'acqua in cui il nuoto avviene.

Figurandosi il linguaggio come un sistema di elaborazione il cui funzionamento è mediato da altri processi cognitivi non si intende negare la specificità delle rappresentazioni linguistiche. Per esempio, se prendiamo in considerazione il significato di una frase come Mi scoppia la testa! usata per alludere a un forte mal di capo, ci si accorge che esso non è riducibile a ciò che accade nel cervello quando un individuo prova dolore. Mi scoppia la testa! non equivale alla somma del sordo lamento di dolore provocato dal mal di capo più le informazioni su cosa accade al nostro corpo quando pronunciamo la frase in questione. La rappresentazione linguistica del dolore trasforma quest'ultimo in un oggetto nuovo. Eppure, finché non consideriamo i legami tra la rappresentazione linguistica del dolore e ciò che quel dolore è per l'organismo che lo prova, non riusciremo neanche a capire ciò che c'è di specifico nella linguisticità del dolore umano. Detto altrimenti, per apprezzare la specificità della cognitività linguistica della specie umana, non serve fermarsi incantati a contemplarla, ma occorre farla emergere dallo sfondo delle altre capacità che ne mediano il funzionamento.

La terza caratteristica delle scienze cognitive del linguaggio, almeno come vengono presentate in questo volume, risiede nella convinzione che per comprendere il fenomeno linguistico occorre rivolgersi soprattutto alle scienze della vita e non alle scienze matematiche e informatiche. Il motivo di tale preferenza è che articolare il linguaggio è più un modo di «usare» il proprio corpo che un modo di usare un sistema astratto e formale. Le scienze cognitive hanno conosciuto due fasi nella loro pur breve storia. Fino a circa quindici anni fa le discipline prevalenti sono state l'informatica e l'intelligenza artificiale. La cognizione veniva considerata come il frutto di un processo di elaborazione delle informazioni di natura essenzialmente logico-astratta. La matematica, la logica e l'informatica erano le basi dello studio dei processi della conoscenza e gli scienziati cognitivi erano straordinariamente attirati dall'idea che l'intelligenza è indifferente al sostrato materiale in cui è realizzata. In questo quadro di riferimento il programma di ricerca dell'intelligenza artificiale era il fiore all'occhiello che gli studiosi mostravano ai profani. Oggi la disciplina che funge da guida nella ricerca è la neuroscienza cognitiva e ciò inevitabilmente concentra l'attenzione degli studiosi sulla plausibilità psicologica e fisiologica delle teorie che vengono elaborate. Non passa settimana che non veniamo investiti da una nuova, o presunta tale, scoperta scientifica relativa al modo in cui il comportamento viene codificato nel cervello. La posta in gioco negli studi neuroscientifici non è indicare le basi neurofisiologiche dei processi cognitivi, ma scoprire come tutto ciò avviene. Gli studi di visualizzazione cerebrale, ad esempio, non mostrano soltanto dove un certo processo cognitivo ha luogo, ma come esso funziona.

Se accettiamo questo programma di massima sarà facile comprendere perché è così forte in questo volume il duplice richiamo a due prospettive apparentemente contrastanti: quella evoluzionista e quella antropoanalitica. Nel primo caso non si tratta di ricercare nelle leggi dell'adattamento una scorciatoja causalistica, l'ennesimo homunculus che direziona e orienta tutte le spiegazioni verso una nuova escatologia, seppur priva dell'autorità teologica. Da questo punto di vista i secoli che ci separano da Darwin hanno smussato le passioni ideologiche di questo dibattio. Si tratta, al contrario, di evitare che il fascino di ipotesi precocemente formalizzate – rispetto a comportamenti che dipendono dalla brutale natura delle costituzioni filogenetiche e della selezione naturale – sovradeterminino le spiegazioni dei fenomeni che le scienze cognitive sperimentali inseguono meto-dicamente, vanificandone l'efficacia. In un certo senso il continuo confronto tra la storia evolutiva di strutture e funzioni e i fenomeni sperimentali che si vanno man mano rivelando, alla ricerca di spiegazioni continuamente rimodellate, a guisa di «regolo lesbio», può essere considerato una moderna versione del metodo vichiano contro la «sapienza riposta», allora individuata nella degenerazione dell'analitica carresiana ocei diffusa nel riduzionismo computazionalista.

Anche il richiamo alla dimensione ontologica degli usi linguistici va considerato nella sua genuina natura filosofica. Non c'è dubbio, infatti che il campo di studi apertosi con la psicopatologia del linguaggio ha dimostrato che nessuna alterazione linguistico-cognitiva può essere compresa senza lo sforzo di ricostruire il processo di riadattamento dell'essere umano - dalla sua dimensione di specie sino a quella ultima del singolo individuo – all'interno di ciò che Wittgenstein chiamava «forme di vita» e che Binswanger ribattezzò «modalità di esistenza». Da questo punto di vista persino l'affermarsi del modello di ricerca delle neuroscienze nella fase attuale delle scienze cognitive mostra una sorta di insufficienza euristica. La contraddittoria individuazione delle anomalie cerebrali che sottostanno ai fenomeni patologici, o addirittura la loro impossibilità di essere esplicitate - come nel caso delle psicopatologie - ci convincono che, qualsiasi siano le forze operative sottese alla meccanica fisio-cognitiva delle lingue, la spiegazione dei disturbi mentali è sempre causata dal malfunzionamento di ciò che Pierre Janet nel 1903 chiamava già la «fonction du réel», la proprietà del linguaggio non di comunicare, ma di creare la rappresentazione della realtà.

Ques' ultima convinzione spiega l'apparente contraddizione tra le prospettive qui esplicitate. È proprio dalla storia evolutiva che cominciamo ad imparare, con sempre maggior ricchezza di dati, che la misura dell'evoluzione delle strutture filogenetiche del linguaggio corre parallela a quella delle funzioni. E le parallelo non si incontrano mai. Ciò vuol dire che l'analisi delle analogie e dei progresiva affinamenti dei sistemi di comunicazione indica inequivocabilmente una continuità delle strutture, ma anche che la comparsa del linguaggio come un sistema di rappresentazione individuale e collettivo della realta costituisce un punto di fuga irreversibile delle funzioni, una proprietà emergente non più ricostruibile con i mezzi di indagine sinora a disposizione.

Questo lavoro nasce dai numerosi progetti di ricerca interdisciplinare promossi negli ultimi cinque anni dal Dipartimento di Scienze cognitive e della formazione e dal Dottorato in Scienze cognitive, oltreché dall'esperienza didattica maturata nei Corsi di laurea triennali di Scienze della comunicazione e di quelli specialistici in Teorie della comunicazione e dei linguaggi e in Scienze nositive delle Facoltà di Scienze della Formazione e di Scienze della Formazione e di Scienze matematiche fisiche e naturali dell'Università di Messina

Molti amici, colleghi e studenti hanno collaborato con noi discutendo appassionatamente, sia all'interno dei seminari dottorali sia nel corso di numerosi incontri in diverse università italiane e straniere, i temi del libro. Contributi particolarmente importanti ci sono venuti da Daniele Gambarara, Marco Carapezza, Felice Cimatti, Francesco Ferretti, Giulio Giorello, Gianluigi Oliveri, Simona Morini, Francesca Piazza, Elvira Assenza, Rosalia Cavalieri, Donata Chiricò, Dino Palumbo. A Manuela Bruno, Nino Bucca, Mariangela Campochiaro, Sebastiano Nucera, Tiziana Patti, Francesco Parisi e Assunta Penna, e agli altri valenti giovani studiosi dei Dottoratifratelli di Scienze Cognitive di Messina e di Filosofia del linguaggio e della mente di Palermo va un ringraziamento affettuoso per il costante sostegno nel lavoro organizzativo e scientifico. Un ringraziamento particolare va anche al Direttore del Dipartimento di Scienze cognitive e della formazione, Pietro Emanuele e a Rosalba Larcan, Coordinatrice del Dottorato in Psicobiologia dei processi cognitivi, che hanno collaborato a molte iniziative seminariali, e a Nino Laganà, senza il quale ci sarebbe venuta meno la cautela e l'ironica e autoironica saggezza che sempre dovrebbero accompagnare il lavoro di ricerca più impegnato.

Questo libro è dedicato al nostro maestro Franco Lo Piparo che, senza aver mai avuto alcuno di noi ombra di sospetto, ascoltando la sua parola pubblica e privata, ha compiuto sessant'anni. La nuova saggezza che questo evento comporta gli renderà più evidente da quanto affetto e orgogliosa stima è circondato oggi da tutti i suoi allievi.

ANTONINO PENNISI e PIETRO PERCONTI

Filosofia della mente

Le scienze cognitive del linguaggio vengono presentate come una disciplina che rifiuta la svolta linguistica, ossia l'idea che i problemi filosofici siano problemi di linguaggio e che esista una priorità esplicativa del linguaggio rispetto al pensiero. Al contrario, ci sono ragioni per credere che il pensiero possa essere studiato indipendentemente dal linguaggio. Inoltre, vengono prese in considerazione alcune funzioni cognitive non linguistiche che sono indispensabili per il funzionamento del linguaggio. Si mostra come quest'ultima considerazione spinga verso la tesi della priorità esplicativa del pensiero rispetto al linguaggio. Viene, infine, presentata la teoria rappresentazionale computazionale della mente, la tesi oggi prevalentenegli studi cognitivi, e suggerito come tale teoria abbia difficoltà a rendere conto di alcuni aspetti centrali della vita mentale, quali la coscienza e la normatività.

1. LA SVOLTA LINGUISTICA

Il linguaggio è un aspetto essenziale dell'esperienza umana. Per questa ragione, almeno fin dai tempi della Grecia classica, è stato costantemente oggetto di riflessione e di studio nella tradizione occidentale. Quasi ognia spetto della vita umana può essere apprezzato adottando un punto di vista linguistico. Non esiste fenomeno sociale, artistico, storico o politico la cui considerazione non diventi più chiara quando sia condotta in modo linguisticamente avvertito. D'altra parte non ci sono figure intellettuali di rilievo nella storia la cui opera non si distingua per l'uso personale della lingua o per la sua considerazione. Lo studio del linguaggio è quindi un elemento costante della storia occidentale. Eppure da alcuni decenni è comparso qualcosa di nuovo sotto il sole.

La novità è determinata dall'avvento delle scienze cognitive. Esse rappresentano una delle imprese scientifiche più ambiziose degli ultimi decenni. Il loro obietivo consiste nel comprendere e saper riprodurre i processi della conoscenza. Si tratta di una iniziativa a cui concorrono studiosi di formazione diversa, tra cui neuroscienziati, linguisti, esperti di informatica e di intelligenza artificiale, psicologi, antropologi e filosofi. In genere quando si usa l'espressione «scienza cognitiva» – al singolare – si intende mettere l'accento sul fatto che si tratta di un programma di ricerca unitario, mentre quando si preferisce l'espressione «scienza coentitive» – al lurale – si vuole sottolineare il contributo delle diverse

discipline. L'unica possibilità che la fusione dei gerghi specialistici degli studiosi appena menzionati non dia luogo a una Babele risiede nel tentativo di convergere sul terreno di un'unica idea di conoscenza. Vedremo più avanti quali sono le restrizioni che le scienze cognitive impongono all'idea comune di cosa voglia dire conoscere. Ma intanto si può affermare che, rivolte verso il linguaggio verbale, le scienze cognitive mettono capo a un programma di ricerca che cerca di comprendere i vari processi coinvolti nell'elaborazione linguistica in modo da essere in grado di riprodurli anche artificialmente, per esempio in programmi di traduzione automatica, nonché a riabilitare quelle stesse funzioni quando finiscano putroppo per essere danneggiate.

considerare cosa lo distingue dagli altri approcci allo studio linguistico prevalenti

nel Novecento. La cultura del secolo scorso è stata profondamente caratterizzata dall'interesse per il fenomeno linguistico. Eppure le scienze cognitive del linguaggio sono prodotte in contrapposizione alla tendenza linguistica dominante nel Novecento. Se il secolo scorso è stato caratterizzato dalla cosiddetta «svolta linguistica», allora in un certo senso le scienze cognitive del linguaggio sono una disciplina «antilinguistica». La convinzione che la disciplina che stiamo prendendo in considerazione sia una creatura un po' paradossale deriva dalfatto che essa si è sviluppata quando la svolta linguistica ha esaurito la sua spinta propulsiva e, in un certo senso, contrapponendovisi. Se si considerano le scienze cognitive del linguaggio adottando una prospettiva filosofica, si nota come generalmente esse affrontino il linguaggio partendo dalla mente e dal pensiero, laddove fino all'avvento delle scienze cognitive erano la mente e il pensiero, accanto alla società e a molti altri fenomeni, a essere studiate a partire dal fenomeno linguistico.

all'avvento delle scienze cognitive erano la mente e Il pensiero, accanto alla società e a molti altri fenomeni, a essere studiate a partire dal fenomeno linguistico. Il Novecento è stato il secolo che più di ogni altro ha prestato attenzione al linguaggio nello studio della conoscenza. La cultura del secolo scorso ha diversi altri tratti caratteristici che la contraddistinguono rispetto ad altre epoche storiche. Per esempio, è una cultura di massa. Numerosi fenomeni sociali, tra cui la comunicazione, la guerra, l'editoria e il turismo, hanno assunto nel Novecento una dimensione massificata. Un'altra importante caratteristica della cultura del secolo scorso, meno vistosa di quella precedente ma non meno profonda, è l'inclinazione ad apprezzare i condizionamenti delle forme della conoscenza invece che i suoi contenuti. Gli intellettuali novecenteschi non si concentrano quasi mai sulla trama di un film o di un romanzo. Al contrario, sono straordinariamente

La novità è determinata dall'avvento delle scienze cognitive. Esse rappresentano una delle imprese scientifiche più ambiziose degli ultimi decenni. Il loro obiettivo consiste nel comprendere e saper riprodurre i processi della conoscenza. Si tratta di una iniziativa a cui concorrono studiosi di formazione diversa, tra cui neuroscienziati, linguisti, esperti di informatica e di intelligenza artificiale, psicologi, antropologi e filosofi. In genere quando si usa l'espressione «scienza cognitiva» - al singolare - si intende mettere l'accento sul fatto che si tratta di un programma di ricerca unitario, mentre quando si preferisce l'espressione «scienze cognitive» – al plurale – si vuole sottolineare il contributo delle diverse discipline.

L'unica possibilità che la fusione dei gerghi specialistici degli studiosi appena menzionati non dia luogo a una Babele risiede nel tentativo di convergere sul terreno di un'unica idea di conoscenza. Vedremo più avanti quali sono le restrizioni che le scienze cognitive impongono all'idea comune di cosa voglia dire conoscere. Ma intanto si può affermare che, rivolte verso il linguaggio verbale, le scienze cognitive mettono capo a un programma di ricerca che cerca di comprendere i vari processi coinvolti nell'elaborazione linguistica in modo da essere in grado di riprodurli anche artificialmente, per esempio in programmi di traduzione automatica, nonché a riabilitare quelle stesse funzioni quando finiscano purtroppo per essere danneggiate.

Per comprendere pienamente la natura di questo progetto di ricerca occorre considerare cosa lo distingue dagli altri approcci allo studio linguistico prevalenti nel Novecento. La cultura del secolo scorso è stata profondamente caratterizzata dall'interesse per il fenomeno linguistico. Eppure le scienze cognitive del linguaggio sono prodotte in contrapposizione alla tendenza linguistica dominante nel Novecento. Se il secolo scorso è stato caratterizzato dalla cosiddetta «svolta linguistica», allora in un certo senso le scienze cognitive del linguaggio sono una disciplina «antilinguistica». La convinzione che la disciplina che stiamo prendendo in considerazione sia una creatura un po' paradossale deriva dal fatto che essa si è sviluppata quando la svolta linguistica ha esaurito la sua spinta propulsiva e, in un certo senso, contrapponendovisi. Se si considerano le scienze cognitive del linguaggio adottando una prospettiva filosofica, si nota come generalmente esse affrontino il linguaggio partendo dalla mente e dal pensiero, laddove fino all'avvento delle scienze cognitive erano la mente e il pensiero, accanto alla società e a molti altri fenomeni, a essere studiate a partire dal fenomeno linguistico.

Il Novecento è stato il secolo che più di ogni altro ha prestato attenzione al linguaggio nello studio della conoscenza. La cultura del secolo scorso ha diversi altri tratti caratteristici che la contraddistinguono rispetto ad altre epoche storiche. Per esempio, è una cultura di massa. Numerosi fenomeni sociali, tra cui la comunicazione, la guerra, l'editoria e il turismo, hanno assunto nel Novecento una dimensione massificata. Un'altra importante caratteristica della cultura del secolo scorso, meno vistosa di quella precedente ma non meno profonda, è l'inclinazione ad apprezzare i condizionamenti delle forme della conoscenza invece che i suoi contenuti. Gli intellettuali novecenteschi non si concentrano quasi mai sulla trama di un film o di un romanzo. Al contrario, sono straordinariamente attirati dal genere di racconto, dai condizionamenti che l'ideologia dell'autore può aver eventualmente prodotto nella sua opera o dai pregiudizi che guidano l'interpretazione del pubblico. Posto di fronte a un qualsiasi artefatto culturale, l'intellettuale del Novecento è spinto a evidenziare il motivo per cui esso ha la forma che ha e da cosa possano dipendere le sue interpretazioni, piuttosto che ad apprezzare immediatamente cosa esso comunica.

La cultura novecentesca ha generalmente rifiutato sia la differenza tra forma e contenuto, sia l'idea che vi siano dei fatti o dei dati neutrali rispetto alle interpretazioni. In un celebre libro intitolato Vedere e costruire il mondo. Nelson Goodman [1978, 27] giudica «in gran parte sbagliata» la differenza tra ciò che si dice (il contenuto) e come lo si dice (lo stile). Il punto è che a suo parere il «come» influenza il «che cosa» a tal punto da costituirlo, almeno in parte. L'impiego di certi simboli invece che altri produce un mondo invece che un altro. Vedere le cose non equivale ad apprezzarle passivamente, quanto a produrle secondo la simbologia che media il processo di rappresentazione in atto. Costruiamo mondi fabbricando diverse versioni della realtà secondo i simboli che decidiamo di impiegare.

Ouando Goodman propone queste idee eglista raccogliendo il frutto di un sentire comune assai diffuso tra gli intellettuali del suo tempo e mettendo in bella copia alcune tendenze profonde nella cultura del suo tempo. Eppure le radici di questo modo di pensare risalgono agli inizi dell'Ottocento, quando l'Europa era battuta dai venti del Romanticismo. Si noti, per esempio, l'analogia con quanto affermato da Wilhelm von Humboldt riguardo al rapporto tra i dati e le interpretazioni storiografiche. In un discorso tenuto all'Accademia delle scienze di Berlino nel 1821. Humboldt sosteneva che nella storia ciò che è realmente accaduto non è che lo scheletro dell'avvenimento e che la verità storica va raggiunta con ben altra via: «i fatti della storia, nelle singole circostanze che li congiungono, sono poco più che il risultato della tradizione e dell'indagine che si è convenuto di prender per veri, poiché essi, più verosimili in sé, si adattano ancora meglio nella connessione del tutto» [Humboldt 1821, 36], Benché pronunciate nell'Ottocento tali parole rappresentano, grazie alla loro sottolineatura della priorità delle interpretazioni sui fatti, un manifesto di gran parte della cultura novecentesca.

Il modo di pensare appena delineato ha avuto un esplicito riflesso nella considerazione che il linguaggio ha guadagnato nella filosofia novecentesca. Nella filosofia del secolo scorso il fenomeno linguistico ha ricevuto un'attenzione talmente grande che numerosi studiosi hanno potuto considerare la svolta linquistica come il suo vero marchio di fabbrica. La filosofia novecentesca sarebbe senz'altro una filosofia linguistica e conseguentemente il suo slogan suonerebbe: «I problemi filosofici sono problemi di linguaggio». In un saggio che ha diffuso enormemente le espressioni che stiamo prendendo in considerazione Richard Rorty [1967, 29] ha affermato:

Con «filosofia linguistica» intendo la concezione secondo cui i problemi filosofici sono problemi che possono essere risolti (o dissolti) o riformando il linguaggio, o ampliando la conoscenza del linguaggio che usiamo. Ouesta idea è considerata da molti dei suoi sostenitori come la scoperta filosofica più importante del nostro tempo, anzi, di tutte le epoche.

Queste affermazioni possono avere due letture. Da una parte si può ritenere che i problemi genuinamente filosofici siano prodotti dal linguaggio, precisamente da certi suoi perniciosi impieghi, e che quindi analizzare gli usi linguistici sia il modo migliore di esercitare la pratica filosofica. Dall'altra parte si può pensare che il linguaggio, oltre che il luogo in cui si generano i problemi filosofici, sia anche lo strumento più adeguato per risolverli. I due sensi in cui lo slogan può essere inteso possono anche essere ritenuti complementari. I problemi della filosofia potrebbero nascere da certi garbugli linguistici, che riflettono intuizioni comuni sbagliate o inclinazioni teoriche da estirpare, sciolti i quali - mediante una opportuna analisi linguistica - essi svaniscono.

All'inizio del suo Libro blu [1958], Ludwig Wittgenstein stigmatizza l'idea che dietro gli usi linguistici ci sia un significato nascosto e inteso come una sostanza che rende possibili e coerenti quegli usi. Al contrario, se osservassimo attentamente gli usi linguistici delle singole parole, saremmo in grado di rintracciare la loro «grammatica», ossia l'insieme degli usi convenzionalmente accettati, e non avremmo bisogno di supporre che dietro tale «grammatica» sia celato alcun significato metafisico. Così Wittgenstein vede sorgere il problema filosofico del significato da nient'altro che da un abuso linguistico, generato da un errore di prospettiva, e scorge nello stesso tempo nell'analisi linguistica anche il farmaco per guarire dalla malattia (cfr. cap. VI. §. 3.2.2 per un uso di queste idee nella psicopatologia).

1.1. Filosofia ermeneutica

La mappa più popolare delle tendenze della filosofia novecentesca è disegnata contrapponendo da una parte la filosofia analitica, che avrebbe la sua origine tra la fine dell'Ottocento e gli inizi del Novecento negli scritti di Gottlob Frege e Bertrand Russell e successivamente nelle opere di Wittgenstein, e dall'altra parte la filosofia continentale [D'Agostini 1997a; 1997b]. La qualificazione di «continentale» va intesa in opposizione al fatto che la tendenza analitica si è sviluppata soprattutto nel mondo anglosassone (e dalla Gran Bretagna il resto dell'Europa è visto come «continentale»), mentre la filosofia del Continente sarebbe rimasta rintanata nel cuore della vecchia Europa. La caratterizzazione geografica della filosofia «continentale» è insoddisfacente. Da una parte, infatti, alcuni iniziatori della filosofia analitica, come Frege, Wittgenstein, Rudolf Carnap e Hans Reichenbach, erano di madrelingua tedesca, benché molti di loro abbiano invero esercitato la propria professione soprattutto in Gran Bretagna e negli Stati Uniti. Dall'altra parte oggi si registra una notevole diffusione della filosofia analitica in tutti i Paesi europei e della filosofia «continentale» negli Stati Uniti.

La filosofia continentale comprende molte aree diverse, tra cui l'esistenzialismo. la fenomenologia, il decostruzionismo e lo strutturalismo. Ai fini della nostra argomentazione conviene concentrare brevemente l'attenzione sulla filosofia di orientamento ermeneutico a motivo del fatto che in questa corrente la svolta linguistica comune a tutta la filosofia «continentale» risulta particolarmente evidente. La tendenza ermeneutica in filosofia ha i suoi campioni in Martin Heidegger, Hans Georg Gadamer e Paul Ricoeur ed è caratterizzata dall'idea che i processi della conoscenza vadano innanzi tutto intesi come processi interpretativi. Allo stesso tempo si sostiene che l'interpretazione è soprattutto una questione che dipende da come si usa il linguaggio verbale.

Ouando Heidegger ha tentato di rimettere la questione dell'essere al centro della riflessione filosofica, è al linguaggio che ha rivolto principalmente la sua attenzione. Infatti, secondo il suo punto di vista, «il linguaggio è la casa dell'essere. Nella sua dimora abita l'uomo. I pensatori e i poeti sono i custodi di questa dimora. Il loro vegliare è il portare a compimento la manifestatività dell'essere; essi, infatti, mediante il loro dire, la conducono al linguaggio e nel linguaggio la custodiscono» [Heidegger 1947, 31; cfr. anche Heidegger 1959]. In seguito alle riflessioni di Heidegger il linguaggio assume un ruolo decisivo anche nell'opera di Gadamer. Per quest'ultimo [Gadamer 1960, 8] «il comprendere non è uno dei possibili atteggiamenti del soggetto, ma il modo di essere dell'esistenza stessa come tale» e la comprensione è essenzialmente una questione linguistica. Infatti, «il linguaggio e quindi la comprensione sono caratteri che definiscono in generale e fondamentalmente ogni rapporto dell'uomo con il mondo» [ibidem. 543] e l'essere stesso sembra avere in qualche modo, secondo una celebre affermazione, una natura linguistica: «L'essere che può venire compreso è linguaggio» [ibidem, 542]. Prendere atto che la comprensione è un fenomeno interpretativo e che quest'ultimo è a sua volta un processo linguistico fa del comprendere e dello stesso stare al mondo fatti essenzialmente linguistici, in accordo con la convinzione che il pensiero e il linguaggio siano attività indissolubili e che il mondo stesso sia una creatura linguistica [ibidem, 462].

Dal momento che le riflessioni dei teorici di orientamento ermeneutico non hanno esercitato una influenza significativa nelle scienze cognitive del linguaggio (con alcune notevoli eccezioni, tra cui quelle menzionate nel cap. VI), in questa sede possiamo evitare di seguire le loro investigazioni in modo dettagliato. Le considerazioni precedenti sono perciò sufficienti a mostrare come la svolta linguistica sia una caratteristica che riguarda l'intera avventura filosofica del Novecento e non soltanto una sua parte.

1.2 Filosofia analitica

Se nella filosofia ermeneutica il ruolo della svolta linguistica è molto significativo. secondo alcune interpretazioni la filosofia analitica consisterebbe senz'altro nel modo di pensare da essa avviato. Coerentemente con quest'ultima affermazione. Michael Dummett ha sostenuto che nel momento stesso in cui un teorico abbandonasse la svolta linguistica, come secondo il suo punto di vista è avvenuto nel caso di Gareth Evans o di John Searle, egli cesserebbe con ciò di essere un filosofo analitico [Dummett 1988, 155-157], Il monito di Dummett non ha avuto la forza di fermare il movimento che, dagli anni Ottanta in poi, ha condotto molti pensatori di orientamento analitico ad abbandonare la svolta linguistica nella sua forma originaria. D'altra parte, e contrariamente a quanto ci si sarebbe dovuti aspettare seguendo il ragionamento di Dummett, la filosofia analitica non sembra affatto essersi esaurita in seguito a tale abbandono.

Il fatto è che probabilmente la specificità dell'orientamento analitico non si trova dove Dummett crede di rinvenirla. Secondo Diego Marconi [1994, 9] potrebbe trovarsi semplicemente in uno stile comune: in questa prospettiva la filosofia analitica sarebbe un orientamento

in cui hanno gran parte le definizioni e le argomentazioni esplicite, l'uso di controesempi per invalidare proposte di riduzione, il ricorso – sistematico, anche se non acritico – alle assunzioni del senso comune e ai risultati delle scienze naturali e della matematica. La filosofia analitica non si occupa in modo particolare di linguaggio (non più che della giustizia, o del progresso scientifico, o del rapporto tra mente e cervello), e la sua attenzione per il linguaggio fa tutt'uno con la sua ricerca di chiarezza e precisione.

Probabilmente il fatto che nell'ordine della spiegazione filosofica il linguaggio sia prioritario rispetto al pensiero non è quindi, come ritiene Dummett [1991, 315], l'assioma fondamentale della filosofia analitica [cfr. anche Dummett 1998, 11 ss. l. Però la «tesi della priorità» (priority thesis), come spesso viene chiamata tale affermazione, potrebbe paradossalmente costituire l'idea che sta alla base della svolta linguistica, ovunque essa sia professata. Forse l'affermazione della tesi della priorità, con la sua tipica convinzione che l'analisi del pensiero debba procedere attraverso l'analisi del linguaggio, non è una condizione necessaria e sufficiente per individuare un filosofo analitico, ma è una caratteristica comune a tutti i teorici che assumono la svolta linguistica.

Christopher Peacocke [1997] ha confrontato la tesi della priorità di Dummett con altri due possibili atteggiamenti. Il primo è ciò che egli chiama la «tesi della non priorità» secondo cui non ci sarebbe alcuna priorità concettuale tra il pensiero e il linguaggio. In questa prospettiva entrambi i termini della relazione possono essere considerati autonomamente e non hanno bisogno di alcuna mediazione concettuale. Secondo Peacocke un esponente della tesi della non priorità è Donald Davidson, Quest'ultimo, infatti, nel suo saggio Pensare e parlare [1984]. 2321 afferma che

né il linguaggio né il pensiero possono essere completamente spiegati l'uno sulla base dell'altro e nessuno dei due è concettualmente prioritario. È vero che sono legati, nel senso che ognuno dei due richiede l'altro per poter essere capito; ma il legame non è così completo da far sì che uno dei due basti - quand'anche ragionevolmente rafforzato – a spiegare l'altro.

Il terzo atteggiamento è l'opposto della tesi della priorità linguistica. Secondo questo modo di pensare per comprendere il modo in cui funziona il linguaggio è necessario ricorrere al pensiero [Peacocke 1997, 2-3]. Sebbene la tesi della priorità mentale sembri una eresia agli occhi del teorico della svolta linguistica. nelle pagine seguenti cercheremo di mostrare come in effetti numerose ricerche degli ultimi anni spingano precisamente in questa direzione e come le scienze cognitive del linguaggio siano caratterizzate proprio da tale atteggiamento tilosofico

2. DAL LINGUAGGIO ALLA MENTE

Le scienze cognitive non sono nate in un giorno. Ci sono numerosi avvenimenti che hanno segnato il suo sviluppo embrionale, dal simposio tenutosi nel settembre del 1956 al Massachusetts Intitute of Technology di Boston (al quale presero parte tra gli altri Noam Chomsky, Allen Newell e Herbert Simon) fino al primo numero della rivista «Cognitive Science», uscito nel 1977 [Gardner 1985: Bara 1990, 43 ss.: Nannini 2002, 94 ss.]. Ma è dagli inizi degli anni Settanta che si parla insistentemente di scienza cognitiva. Da quando, nel corso di quel decennio, il panorama della nuova scienza della mente è stato accettato da ampi settori scientifici, il modo comune di considerare molti problemi della conoscenza ne è risultato profondamente modificato. È difficile ormai menzionare un campo di ricerca che non sia stato affrontato muovendo dai presupposti del nuovo modo di considerare la mente: probabilmente l'ergonomia cognitiva e il neuro-marketing sono ancora espressioni esotiche per la maggioranza delle persone, ma per numerosi studiosi si tratta già di tentativi ordinari di applicazione delle scienze cognitive alla progettazione degli artefatti e al marketing [cfr., per esempio. Walter et al. 2005; Di Nocera 2004]. Oltre che verso campi di ricerca innovativi. le scienze cognitive vengono impiegate anche per investigare le più classiche e profonde questioni umane. Così si moltiplicano i libri dedicati al sentimento religioso, artistico o etico, considerati con gli occhi della nuova scienza i Dennett 2006; Gazzaniga 2005; Ramachandran 2003 l.

La svolta che stiamo prendendo in considerazione è sia mentalistica sia cognitiva. Conviene però non usare le espressioni come se fossero equivalenti. È possibile ritenere che ci sia una priorità del pensiero sul linguaggio e tuttavia non aderire ai presupposti teorici della scienza cognitiva. Pertanto è meglio riservare l'espressione «svolta mentalistica» all'insieme di idee che muovono dalla priorità esplicativa del pensiero sul linguaggio e usare l'espressione «svolta cognitiva» per il complesso più generale di ricerche che affrontano il fenomeno della conoscenza secondo i presupposti delle scienze cognitive. Se si aderisce alla svolta cognitiva si accorda il proprio favore anche a quella mentalistica, nel senso che si ritiene che vi sia una priorità esplicativa del pensiero sul linguaggio, e si è inoltre convinti che entrambi i termini della relazione siano processi cognitivi nel senso specificato dal cognitivismo.

Il ruolo che il linguaggio aveva nelle forme predominanti del sapere fino a circa

venti o trenta anni fa era coerente con il relativismo, una posizione ancora oggi parecchio diffusa. Con le parole di Steven Pinker [2002, 246]:

per il relativismo, oggi prevalente in gran parte del mondo accademico, la realtà è socialmente costruita dall'uso del linguaggio, dagli stereotipi e dalle immagini dei media. L'idea che la gente abbia accesso ai fatti nella loro oggettività è ingenua, dicono i fautori del decostruzionismo sociale, dei science studies, dei cultural studies, della teoria critica, del postmodernismo e del decostruzionismo.

Secondo Pinker la svolta cognitiva comporta invece l'assunzione dell'antirelativismo, ossia la convinzione che il modo in cui formiamo le nostre rappresentazioni del mondo non dipende dalla cultura così profondamente quanto comunemente si crede. Al contrario, dipende piuttosto dal modo in cui – indipendentemente dai condizionamenti culturali - è fatta la mente umana. Quest'ultima sarebbe universalmente dotata di una fisica e una biologia intuitive, di un senso dello spazio e del numero, nonché da un innato senso della probabilità [ibidem, 271-2721.

Caratteristica delle scienze cognitive è la convinzione che la mente umana sia dotata di un insieme strutturato di capacità biologicamente determinate e indipendenti dalle variazioni culturali. Tale convinzione è basata, come abbiamo anticipato, sulla svolta mentalistica. Nel complesso il passaggio dalla priorità linguistica a quella mentale è dovuta principalmente a due ragioni. Da una parte ci si è resi conto che il pensiero si forma in modo parzialmente indipendente dal linguaggio ed è studiabile in modo autonomo da esso. Dall'altra parte si è notato che ci sono numerose capacità linguistiche che sono meglio comprensibili se si prende in considerazione l'influenza esercitata su di esse da funzioni cognitive che non hanno natura linguistica. Prenderemo in considerazione entrambe le ragioni nelle prossime pagine.

Prima però occorre precisare in che modo la considerazione filosofica della priorità mentale, che intende fornire il quadro entro cui si sviluppano le scienze cognitive del linguaggio, ne influenza il programma di ricerca. Da una parte la tesi della priorità mentale costituisce una restrizione per i singoli studi di dettaglio. Nel tentativo di fornire una spiegazione di un singolo aspetto dell'elaborazione del linguaggio, infatti, generalmente lo scienziato cognitivo interessato al linguaggio dovrà preoccuparsi di considerare in che modo certe funzioni cognitive che non hanno una natura prevalentemente linguistica mediano l'esercizio della funzione linguistica presa in esame.

Dall'altra parte, tuttavia, tutto ciò non pregiudica affatto l'apprezzamento né della specificità dell'elaborazione linguistica né del contributo che quest'ultima reca all'architettura e all'evoluzione della cognitività umana. Al contrario, l'idea che il linguaggio vada studiato tenendo conto delle facoltà non linguistiche che ne mediano il funzionamento, che sarà sviluppata nel § 3.1, costituisce il presupposto necessario per apprezzare, come avverrà nei capitoli seguenti. ciò a cui effettivamente mira il programma di ricerca che stiamo delineando, ossia individuare cosa c'è di veramente specifico nell'elaborazione linguistica

e in che modo il linguaggio verbale contribuisce a rendere unicamente umano il nostro pensiero. La tesi della priorità mentale evidenzia come il linguaggio sia una funzione cognitiva impossibile da comprendere se non la si considera nel quadro delle altre capacità che la sostengono e la rendono possibile. Ma le scienze cognitive del linguaggio, forti di tale considerazione, mostrano poi come la cognizione umana sia qualcosa di diverso dal suo correlato animale o infantile più la capacità di esprimere linguisticamente i pensieri.

3. INDAGINE AUTONOMA DEL PENSIERO

L'idea che per comprendere come funziona il pensiero occorra interrogare il linguaggio dipende in gran parte dalla convinzione che il pensiero è articolato in concetti e che questi ultimi hanno una natura linguistica. Ma ci sono almeno altre due possibilità. Da una parte potrebbero esistere contenuti mentali non concettuali, ossia porzioni del pensiero privi di forma concettuale. Se le cose stessero in questo modo ciò escluderebbe il ricorso al linguaggio come strumento e metodo necessari per comprendere cosa sono tali contenuti. Dall'altra parte potrebbero esistere concetti non linguistici. In entrambi i casi, sia che esistano contenuti non concettuali sia che esistano concetti non linguistici, la tesi della priorità linguistica sarebbe infondata.

Negli ultimi trent'anni numerosi studiosi hanno attirato l'attenzione sulla possibilità dei contenuti non concettuali, ossia quegli stati mentali che sono in grado di rappresentare una porzione di mondo benché il loro portatore non possieda alcun concetto in grado di specificarne il contenuto. Nel dibattito contemporaneo tale nozione è stata introdotta da Gareth Evans [1982] secondo il quale l'informazione veicolata dalla percezione sarebbe priva di natura concettuale. All'inizio tale informazione non sarebbe neppure consapevole e lo diventerebbe soltanto quando entra a far parte dello spazio logico delle ragioni, ossia quando trova il suo posto nella rete delle credenze dell'individuo. Tim Crane [1988] ha argomentato in favore dei contenuti non concettuali ricorrendo all'illusione della cascata, un fenomeno già notato da Aristotele e del quale ha offerto una celebre descrizione Robert Addams [1834] nell'Ottocento.

Trovandosi a visitare le cascate Foyer nel nord della Scozia, vicino al lago di Ness, Addams si accorse che a furia di guardare scorrere l'acqua, a un certo momento le rocce intorno sembravano salire in direzione contraria e con la stessa velocità con cui precipitava il fiume (fig. 1.1). Al di là delle possibili spiegazioni neuroscientifiche del fenomeno [per esempio, Eagleman 2001], Crane ha notato che se il contenuto di una esperienza percettiva è concettuale, allora essa non può essere contraddittoria [Crane 1988; Gunther 2001, 190]. Se vediamo qualcosa e le attribuiamo una certa proprietà sulla base di un concetto, non possiamo allo stesso tempo vederla dotata della proprietà contraria. Se questo invece accade, come nel caso di chi veda le rocce accanto alla cascata sia ferme, perché sa che le rocce sono oggetti immobili, sia in movimento, allora l'esperienza in questione non può essere governata da concetti.

fig. 1.1. Immagine delle cascate Foyers (E Radcivffe)

Ma l'argomentazione si può mettere anche in positivo. Il punto, in definitiva, è che di norma l'esperienza percettiva è più ricca dei concetti che un individuo di fatto possiede per categorizzarla. Quindi ciascuno di noi, in quanto ha esperienze percettive, possiede anche contenuti non concettuali. Per esempio, generalmente siamo in grado di percepire molte più sfumature di colore dei concetti che abbiamo per afferrarle. Ne segue che il riconoscimento cromatico non è interamente questione delle capacità inferenziali o concettuali di cui disponiamo [Crane 2001. 2261.

Una linea di contrasto a questo modo di ragionare è stata elaborata da John McDowell [1994] e consiste nello stabilire una equivalenza tra «concettuale» e «linguisticamente esprimibile» e nell'affermare che esiste effettivamente una capacità linguistico-concettuale, espressa dal dimostrativo complesso «quella sfumatura», di discriminare ogni tonalità di colore. Torneremo più avanti su questo punto suggerendo che, contrariamente a quanto pensa McDowell, la competenza dimostrativa non implica affatto

il possesso di un concetto. Per ora concentriamoci su altre prove che testimoniamo la possibilità di analizzare il pensiero in modo autonomo dal linguaggio. Si tratta di prove derivanti dall'esperienza comune dell'immaginazione e dalla neuropsicologia.

Tutte le persone hanno una vivida vita immaginativa, fatta di rappresentazioni che sembrano visibili con un occhio interno alla mente analogo per certi aspetti agli occhi reali. Quanti oggetti c'erano stamattina sul comodino della camera da letto? Il modo più comune di rispondere alla domanda consiste nel formarsi una immagine della propria camera da letto e del comodino e di iniziare a contare gli oggetti. L'immagine non è ricca di particolari come sarebbe quella generata dagli occhi davanti ad un oggetto presente, ma è nondimeno «visiva» da diversi punti di vista. Soprattutto è dotata di caratteristiche visivo-spaziali: per esempio se un oggetto è occluso da un altro, non è possibile vedere la parte nascosta neppure con gli occhi della mente, proprio come succede con gli occhi reali. Le numerose prove a sostegno della natura visivo-spaziale delle immagini mentali, che confutano l'ipotesi che esse siano fatte della stessa pasta di cui è fatto il linguaggio, fanno di questo genere di immagini e del ragionamento che fa leva su di esse una modalità del pensiero indipendente dal linguaggio [Kosslyn 1996; Ferretti 1998; Denis, Mellet e Kosslyn 2004], Nel complesso le evidenze che provengono dalle immagini mentali militano quindi a favore della tesi della non priorità tra pensiero e linguaggio.

Esiste poi una copiosa messe di evidenze di tipo neuropsicologico che mostra come la capacità di pensiero possa sopravvivere anche quando la parte corrispondente di linguaggio sia stata sfortunatamente compromessa a causa di una lesione cerebrale [Perconti 2001]. Se fosse corretta la tesi della priorità linguistica di Dummett non sapremmo come considerare i casi di quei pazienti che perdono selettivamente una certa capacità linguistica, per esempio la facoltà di denominare una classe di oggetti come la frutta e la verdura, e si dimostrano tuttavia assolutamente in grado di categorizzare quegli stessi oggetti che pure non sanno afferrare linguisticamente. Un paziente potrebbe, per esempio, essere in grado di usare le cipolle nella preparazione di una pietanza, potrebbe saperle disegnare con buona approssimazione, potrebbe sapere che a sminuzzarle si rischia di piangere, e tuttavia potrebbe essere incapace di dire che si tratta di cipolle. Se per spiegare le competenze concettuali dobbiamo passare da quelle linguistiche, come spieghiamo questo tipo di casi?

3.1. L'ipotesi della «core knowledge»

Abbiamo evidenziato alcune ragioni che spingono a condurre una indagine del pensiero che sia autonoma dal linguaggio. In definitiva esse consistono nel fatto che quando un individuo sta pensando, in uno qualsiasi dei sensi plausibili del termine, sta attivando processi che non hanno necessariamente a che fare con l'elaborazione del linguaggio. Parallelamente a questi fenomeni sono stati posti in risalto altri fenomeni in cui si nota l'intelligenza in creature non linguistiche. Bermúdez [2003] ha chiamato il ricorso a tali forme di intelligenza «approccio minimalista al pensiero non linguistico».

Un altro modo di esprimere l'idea dell'intelligenza non linguistica si deve a Marc D. Hauser e Elizabeth Spelke [2004] ed è l'ipotesi della core knowledge:

Che cosa c'è nel cervello e nei sistemi cognitivi che permette agli umani di giocare a baseball, calcolare le radici quadrate, cucinare soufflés o navigare nella metropolitana di Tokvo? Potrebbe sembrare che gli studi sugli infanti umani e sugli animali non umani ci dicano poco relativamente a tali abilità, dal momento che solo gli esseri umani adulti, inseriti in una cultura ed educati sono coinvolti nei giochi organizzati, nelle matematiche formali, nella cucina da gourmet o nella lettura delle mappe. [...] Noi argomentiamo contro tale conclusione apparentemente sensata. Quando gli esseri umani eseguono compiti complessi, unicamente umani e specificamente culturali, essi stanno basandosi su un insieme di meccanismi psicologici e neurali che hanno due proprietà caratteristiche: si sono evoluti prima dell'umanità e quindi sono condivisi con gli altri animali e. inoltre, emergono precocemente nello sviluppo umano e quindi sono comuni agli infanti, ai bambini e agli adulti.

Secondo Hauser e Spelke la core knowledge ha quattro caratteristiche. In primo luogo è specifica per dominio, vale a dire che ciascun sistema cognitivo è in grado di rappresentare soltanto particolari tipi di entità. In secondo luogo è specifica per compito; ogni sistema usa le proprie informazioni per tipi particolari di compiti. Ne sono esempi il riconoscimento dei volti, la categorizzazione degli artefatti e l'orientamento spaziale. In terzo luogo è relativamente incapsulata

dal punto di vista della disponibilità delle informazioni, vale a dire che ogni sistema si serve soltanto di una parte delle informazioni che riceve dall'esterno e rende disponibile il frutto della propria elaborazione soltanto a un'altra parte del sistema cognitivo dell'animale. Infine, il sistema è relativamente automatico e quindi può funzionare in modo indipendente dalla volontà degli individui. In una parola, tutto questo vuol dire che le capacità della core knowledge sono modulari [Marraffa e Meini 2005, capp. 2 e 3].

L'idea che sta alla base dell'ipotesi della core knowledge è che gli esseri umani sviluppano questo insieme di capacità cognitive prima e indipendentemente dell'acquisizione del linguaggio e che la maggior parte di tali capacità sono condivise con altre specie animali filogeneticamente vicine alla nostra. La conseguenza di ciò è che l'elaborazione del linguaggio sarebbe basata su tali competenze cognitive elementari e che queste ultime sarebbero relativamente indipendenti dalle variazioni storiche sociali e culturali

3.2. Gli altri animali

Sono in grado gli altri animali di pensare, nonostante essi non abbiano la nostra forma di linguaggio? La domanda è ambigua, dal momento che la sua risposta dipende soprattutto da come si usano le nozioni di «pensiero» e di «linguaggio», eppure è straordinariamente intuitiva e affascinante. Se lasciamo da parte la millenaria storia filosofica della questione e concentriamo l'attenzione sul dibattito contemporaneo, dobbiamo notare come nel Novecento ci siano stati decenni in cui tale domanda era davvero scottante. Il pregiudizio che pensare voglia dire essenzialmente articolare la forma di linguaggio tipica della specie umana si è riflesso nei fallimentari tentativi compiuti dai coniugi Kellogg [1933] e Haves [1951] di addestrare gli scimpanzé a pronunciare delle parole umane. Tali tentativi non tenevano conto del fatto che, come successivamente ha mostrato Philip Lieberman [1975; 1991], ci sono ostacoli di tipo anatomico relativi alla forma della laringe che impediscono agli scimpanzé di pronunciare correttamente i suoni delle lingue umane (cfr. cap. II. § 1.1 e cap. VI. § 1.2).

I primi fallimentari tentativi di investigare scientificamente le capacità espressive degli altri animali sono stati fortunatamente seguiti da numerosi successi, da quelli del premio Nobel Karl von Frisch [1965] che ha interpretato il significato delle strane danze simboliche delle api, a quelli dei coniugi Gardner che hanno avuto un certo successo nell'addestramento della femmina di scimpanzé Washoe all'uso della Lingua Americana dei Segni, in uso presso la comunità statunitense dei sordi [Fouts e Tukel Mills 1997]. Oggi esistono davvero numerose evidenze che mostrano che negli altri animali ci sono forme di pensiero anche in assenza del linguaggio e che mettono inoltre in luce quanto varie siano le forme che possono prendere i sistemi espressivi delle altre specie animali.

L'esistenza stessa dell'etologia cognitiva si basa su questo presupposto. Essa infatti non si limita a descrivere sistematicamente il comportamento animale,

ma lo considera come il frutto dell'elaborazione di processi cognitivi interni. Gli studiosi del comportamento animale che hanno dovuto ingaggiare una battaglia culturale per dimostrare che anche gli altri animali sviluppano sofisticate forme di pensiero, come per esempio ha fatto tra i primi Donald Griffin [1992], hanno dedicato molte energie per raggiungere questo obiettivo. Ma negli ultimi anni gli etologi cognitivi iniziano a dare per scontata la questione. Marc Hauser, per esempio, richiede esplicitamente che siano formulate domande più perspicue di quella classica circa il pensiero degli altri animali [2002, 73]:

In genere eviterò di servirmi delle parole «pensare», «conscio» e «intelligente». Mi interrogherò invece sui fenomeni mentali più precisamente specificati, quali la capacità di un animale di servirsi di attrezzi, di risolvere problemi mediante simboli, di trovare la strada di casa, di capire le proprie convinzioni, e quelle degli altri, e di imparare grazie alla imitazione.

È importante rendersi conto che intorno alle capacità intellettuali degli altri animali è ancora in corso una cruenta battaglia culturale. Ne va dell'identità umana. Siamo abituati a pensare a noi stessi come a animali dotati di ragione e linguaggio. Se scopriamo che gli altri animali hanno anch'essi ragione e linguaggio, l'identità umana ne risulta compromessa. Per esempio, potremmo iniziare a chiederci che genere di diritti attribuire agli altri animali [Regan 1983], Ma. mentre nella discussione pubblica dei Paesi occidentali questi sono ancora argomenti controversi, nella ricerca scientifica l'opinione prevalente è quella di Hauser: non è più questione di negare o riconoscere aprioristicamente ragione e linguaggio agli altri animali, ma di comprendere di che genere di ragione e linguaggio si tratta.

Occorre riconoscere che in questo atteggiamento c'è una quota di antropomorfismo. Osserviamo noi stessi, ci scopriamo dotati di certe caratteristiche e andiamo in cerca delle stesse qualità negli altri animali. Lo faceva già Esopo con le proprie favole: così nella volpe si vedeva la furbizia e nel leone la forza. Da una parte la psicologia comparata riflette inevitabilmente una certa porzione di antropomorfismo. Da dove muove spesso la curiosità scientifica che porta a investigare il comportamento degli altri animali riguardo una certa caratteristica psicologica, se non dal desiderio di capire se e quanto gli altri animali sono «come noi»? Dall'altra parte, dal momento che i ricercatori ritengono che l'antropomorfismo comprometta il valore scientifico delle loro scoperte, tentano di evitarlo come la peste. Così, oscillando tra tali atteggiamenti contrastanti e tentando di modificare l'immagine più comunemente coltivata circa l'identità umana, grazie all'osservazione di quante caratteristiche «umane» sono anche «animali», può darsi che abbiamo messo da parte alcune evidenze scientifiche importanti.

Jennifer Vonk e Daniel J. Povinelli [in stampa] hanno sottolineato quanto il concetto di diversità sia essenziale in biologia. Per i biologi è familiare parlare di differenze genetiche, fisiologiche, morfologiche o comportamentali, ma paradossalmente ormai si riscontra una forte resistenza ad accettare l'idea della diversità psicologica tra le varie specie animali. Per esempio, mentre non c'è nulla di controverso nell'osservazione che i mammiferi sono endotermici e i rettili esotermici, è più difficile trovare differenze psicologiche così unanimemente accettate. Eppure c'è una tradizione di ricerca in biologia che aveva fondato la nozione di differenza psicologica in modo accorto. Lo zoologo di ispirazione kantiana Jakob von Uexküll [1909] aveva chiamato Umwelt, che in tedesco è una parola simile a quella usata per indicare il mondo (Welt), la porzione di mondo a cui ciascuna specie ha accesso grazie alle risorse percettive e più generalmente cognitive di cui dispone. Si può così sostenere che le limitazioni che caratterizzano l'accesso epistemico di ciascuna specie animale siano anche il fondamento della loro diversità psicologica [Lo Piparo 1999].

L'idea di Povinelli è che la diversità psicologica più profonda tra noi e gli altri primati consista nel fatto che il nostro ragionamento è in grado di vertere su entità inosservabili, mentre gli altri primati - inclusi gli scimpanzé - nell'articolazione della propria vita sociale si baserebbero soltanto su caratteristiche osservabili. Gli scimpanzé non si rendono conto che dietro i movimenti altrui. le espressioni facciali e il comportamento in genere c'è dell'altro, anche se sono in grado di fare inferenze apprezzabili sulle entità osservabili [Povinelli 2004: Povinelli e Vonk 2004).

3.3. Gli infanti

Alla fine dell'Ottocento William James [1890] descriveva il mondo esperienziale dei bambini come una «confusione ronzante e fiorita». Nel secolo scorso Jean Piaget considerava il bambino al momento della nascita come sprovvisto di predisposizioni attentive; a lui gli stimoli esterni apparirebbero come «indifferenziati e caotici», in grado di determinare soltanto quadri mutevoli della realtà [Piaget 1937]. «Al momento della nascita la vita mentale è ridotta all'uso delle strutture riflesse» e di lì a poco la principale acquisizione dell'infante consisterebbe nel fatto che «per lui il mondo è essenzialmente una realtà da succhiare» [Piaget 1964]. D'altra parte i comportamentisti, come Burrhus FredericSkinner [1953]. consideravano il bambino piccolo senz'altro come una tabula rasa, ossia del tutto privo di predisposizioni e conoscenze innate.

Ormai queste affermazioni non sembrano più accettabili. Adesso, al contrario, agli occhi degli studiosi di psicologia dello sviluppo la mente dei bambini appare ricca e strutturata fin dai primi giorni di vita. Anche gli infanti, ossia i bambini quando ancora non sono in grado di parlare o di comprendere il linguaggio. danno prova precoce di pensiero. Per esempio, sono in grado di cogliere molti aspetti fisici del mondo. A tutti noi capita di vedere un oggetto nascosto da un altro. Se si mette la propria mano a una ventina di centimetri dal naso e si osserva la scena si vede che ci sono diversi oggetti la cui visione è parzialmente occlusa dalla mano. Jean Piaget [1936] riteneva che fino a circa otto mesi i bambini non fossero in grado di figurarsi la permanenza degli oggetti occlusi, ossia che non riuscissero a comprendere che un oggetto continua a esistere anche quando non è più visibile. Negli anni Ottanta questa conclusione di Piaget è stata fortemente criticata e oggi è ormai opinione prevalente tra gli studiosi di psicologia evolutiva che i bambini, già dall'età di due mesi e mezzo, siano in grado di rappresentare la permanenza degli oggetti occlusi [Baillargeon 1986; Baillargeon e DeVos 1991; Aguiara e Baillargeon 2002). I bambini anche molto piccoli, infatti, hanno una reazione diversa quando assistono a un evento fisicamente possibile rispetto a uno impossibile che coinvolge oggetti non più visibili. Questo suggerisce che gli infanti continuano a ritenere presente l'oggetto anche quando non è più visibile. In riferimento alla ipotesi della core knowledge è interessante notare come capacità analoghe siano state riscontrate anche negli altri primati [Povinelli 2000]. Altri studi hanno mostrato come i neonati si rivolgano preferibilmente alle strutture percettive dotate delle caratteristiche dei volti umani rispetto a quelle di controllo [Karmiloff-Smith 1992]. Evidenze provenienti da pazienti con lesioni al cervello, studi comportamentali e dati ricavati con le tecniche di visualizzazione cerebrale suggeriscono che gli esseri umani vengono al mondo con capacità di individuare selettivamente i volti [Gauthie re Nelson 2001]. Ma anche i primati. come per esempio i gibboni, sembrano possedere capacità analoghe [Myowa-Yamakoshi e Tomonaga 2001; Gauthier e Logothetis 2000].

Gli infanti, inoltre, possiedono nozioni numeriche ben prima di sviluppare il linguaggio. Secondo Hauser e Spelke [2004] essi sono dotati di due sistemi relativi alla numerosità, probabilmente condivisi con altre specie animali: il primo sistema rappresenta approssimativamente il valore cardinale di grandi insiemi di oggetti e il secondo rappresenta il valore esatto quando si tratta di insiemi formati da pochi oggetti [vedi anche Feigenson, Dehaene e Spelke 2004]. Brian Butterworth ritiene che nel cervello della nostra specie ci sia un Modulo Numerico che mette gli esseri umani nella possibilità di «classificare il mondo in termini di quantità numerica o numerosità, cioè del numero di oggetti di un insieme» [Butterworth 1999, 20; cfr. anche Dehaene et al. 2004].

È ben vero che parallelamente agli studi menzionati che suggeriscono capacità di pensiero prelinguistico infantile sono state prodotte evidenze che testimoniano l'invasività del linguaggio fin nella vita intrauterina. Sappiamo che il senso dell'udito è pronto precocemente nello sviluppo intrauterino e che appena nati i bambini sono già in grado di riconoscere la melodia della lingua materna rispetto a ogni altro rumore. Jacques Mehler e i suoi collaboratori [1978] hanno scoperto che già a un mese di età i neonati sono capaci di discriminare la voce materna rispetto a quella di altre donne. Numerosi altri studi hanno mostrato come i bambini abbiano una serie di competenze relative alla percezione dei suoni linguistici fin dai primi giorni di vita e come tali competenze vadano sorprendentemente affinandosi nel corso del primo anno di vita [D'Odorico 2005, 4 ss.]. Ciò che gli infanti assumono della voce della madre in questa fase è essenzialmente il suo andamento prosodico. Del resto l'udito di un bambino appena nato ha già una storia lunga, dato che esso è in grado di funzionare correttamente già dal quinto mese di vita fetale [Pennisi 1994: Cavalieri e Chiricò 2005, 65 ss.].

Quando il bambino, a circa un anno di vita, inizia a produrre le sue prime parole. dispone quindi già di una serie di competenze linguistiche piuttosto sofisticate. Tuttavia non c'è alcuna prova che le capacità discriminative dei suoni linguistici, benché così precoci, siano ciò su cui la core knowled ge è basata. Detto altrimenti, non è ciò che c'è di «linguistico» prima dell'avvento del linguaggiovero e proprio a rendere possibile quelle capacità cognitive di base che invece, come andiamo suggerendo, gli esseri umani condividono, almeno in parte, con alcuni altri animali e che rendono possibile lo stesso sviluppo linguistico maturo.

3.4. Archeologia cognitiva

Fin qui abbiamo notato come il genere di capacità incluse nella core knowledge siano presenti nei bambini prelinguistici e negli altri animali. Vediamo adesso se ci sono evidenze a favore dell'ipotesi che i nostri progenitori nella storia evolutiva umana disponessero di analoghe capacità. A questo scopo ci rivolgiamo all'archeologia cognitiva, una recente prospettiva di ricerca, finora rimasta relativamente isolata dalle tendenze dominanti delle scienze cognitve, volta a investigare lo sviluppo della cognizione negli esseri umani nel loro passato più remoto. Essa si basa sull'idea che i reperti archeologici siano in grado di offrire informazioni sul modo in cui si è evoluta la conoscenza umana. Mentre la paleoantropologia studia le origini umane basandosi essenzialmente sui resti fossili degli scheletri, l'archeologia cognitiva usa preferibilmente fonti differenti, inclusi i reperti degli artefatti (cfr. cap. II, §. 2.2 e cap. VI, § 1).

Dal passato dei nostri più antichi progenitori emergono strumenti e artefatti simbolici. La base delle riflessioni degli archeologi cognitivi è la convinzione che entrambi i generi di oggetti riflettono le capacità cognitive degli individui che li hanno prodotti [Renfrew 1994, 5]. La produzione di strumenti, per esempio. riflette il progetto che ha guidato la sua realizzazione ed è ragionevole ritenere che tale progetto sia stato rappresentato nella mente di un individuo o di un gruppo. Non è detto che tale progetto dipenda necessariamente dal possesso di concetti sofisticati, né che implichi inevitabilmente l'uso della lingua [Bloch 1991]. Secondo Donald Merlin [1991, 147 ss.], per esempio, le capacità esibite dall'Homo erectus, apparso circa un milione e mezzo di anni fa, quando ancora il linguaggio verbale non era apparso nella nostra storia evolutiva, sono rese possibili soprattutto da rappresentazioni imitative che non richiedono alcuna mediazione linguistica.

Di particolare interesse per valutare il genere di conoscenza implicita nella produzione di uno strumento sono gli oggetti usati per tagliare. La conoscenza necessaria alla loro produzione può essere stata derivata dall'osservazione delle proprietà taglienti delle pietre scheggiate rinvenute nell'ambiente oppure potrebbe essere stata desunta dalla comunità [Segal 1994]. Il richiamo alla socialità delle conoscenze conduce alla considerazione delle informazioni che possono essere tratte dall'osservazione degli artefatti simbolici preistorici. I simboli, infatti, spesso svolgono una funzione collettiva religiosa e generalmente esprimono il genere di relazioni sociali da cui traggono significato.

Nel complesso possiamo supporre che le capacità cognitive necessarie a generare le strutture simboliche presenti nell'arte, nell'organizzazione sociale e nella religione, nelle forme più caratteristiche in cui tutto ciò è presente adesso nella specie umana, siano sorte circa 50,000 anni fa, durante il Paleolitico medio-superiore. Ma ancora prima diversi elementi, tra cui la presenza degli strumenti di pietra (2,5 milioni di anni) e di articolate strategie di caccia (1,6 milioni di anni). l'uso controllato del fuoco (0,8 milioni di anni), nonché la strutturazione di habitat complessi, suggeriscono che indipendentemente dallo sviluppo del linguaggio verbale e di un elaborato simbolismo, che sono sopraggiunti più tardi nella storia evolutiva umana, la cognizione ominide differiva profondamente da quella delle altre specie animali [Gabora 2005]. Secondo Stephen Mithen [1994] le evidenze preistoriche fanno pensare, coerentemente con l'ipotesi della core knowledge, che la mente dei nostri progenitori fosse caratterizzata da moduli cognitivi altamente specializzati dedicati a tipi particolari di stimoli ambientali in cui essi potevano imbattersi. Non conosciamo ancora l'ordine evolutivo con cui i vari moduli si sono sviluppati nella storia della nostra specie, ma è ragionevole pensare che la mente umana moderna, sostanzialmente immodificata negli ultimi cinquantamila anni, si sia sviluppata sulla base di competenze modulari precedenti [Donald 1998].

Può darsi che le capacità imitative e di mentalizzazione, anche nelle forme più elementari dell'attenzione condivisa [Tomasello 1999], siano state la base della cognizione ominide pre-linguistica. Condividere una scena percettiva e sapere che la si sta condividendo sembra infatti una competenza implicita in gran parte delle attività simboliche e di costruzione di artefatti di cui abbiamo tracce preistoriche. Sembra quindi che, anche quando il linguaggio verbale non si era ancora sviluppato, dovevano esserci altre competenze, presumibilmente del genere di quelle che formano la core knowledge, che rendevano possibile l'organizzazione della vita sociale dei nostri progenitori. D'altra parte la comunicazione linguistica, con l'effetto cognitivo di formazione di un medium logico per lo sviluppo del pensiero, deve aver potenziato enormemente la cognizione pre-linguistica, rendendo possibile la società umana come la conosciamo oggi. L'idea di Bermúdez [2003, 4-5] è che gli studi condotti dagli archeologi cognitivi nel complesso spingano a pensare che l'emergenza del linguaggio, benché non abbia reso possibile la cognizione. ha consentito tuttavia l'integrazione delle capacità modulari precedenti, potenziandone grandemente lo sviluppo.

4 LE FUNZIONI COGNITIVE NON LINGUISTICHE INDISPENSABILI PER IL LINGUAGGIO

Finora abbiamo visto come alla base della svolta mentalistica e cognitiva ci sia la convinzione che è possibile spiegare come funziona il pensiero anche autonomamente dal linguaggio. La ragione di fondo è che secondo questo modo di ragionare il pensiero non è una creatura interamente linguistica. Sulla base di

tali considerazioni la tesi della priorità esplicativa del linguaggio sul pensiero sembra quindi inadeguata. Tutto ciò è sufficiente a sostenere la tesi della non priorità. Chiediamoci adesso se non ci siano anche ragioni per preferire la tesi più radicale, ossia quella della priorità esplicativa della mente.

Le ragioni che militano a favore della tesi della priorità mentale consistono essenzialmente nel fatto che sembrano esserci alcune abilità linguistiche per comprendere le quali è necessario prendere in considerazione il ruolo di capacità cognitive non linguistiche che ne mediano il funzionamento. Le principali capacità che svolgono tale lavoro sono la lettura della mente e la percezione. Ad esse sono dedicati i prossimi due paragrafi.

4.1. Il ruolo della lettura della mente nel linguaggio

Possiamo prevedere il nostro comportamento e anche quello delle altre persone facendo leva su considerazioni fisiche. Se per esempio ci lanciamo nel vuoto da un ponte con un elastico possiamo supporre di cadere giù e magari anche sperare, grazie all'imbracatura, di risalire sani e salvi. Se vediamo un amico scolarsi una lunga serie di gin tonic, possiamo presumere che dopo un po' sarà ubriaco. Parte delle conoscenze su cui fare questo genere di inferenze formano la nostra fisica e biologia ingenue [Bozzi 1990; Medin e Atran 1999], mentre un'altra parte sono il frutto dell'educazione e delle abitudini contratte nella società.

Un altro modo per prevedere il nostro e l'altrui comportamento consiste nell'affidarsi alla convinzione che a muoverci, oltre che le leggi della fisica e della chimica, siano anche gli stati mentali che abbiamo nella testa. Si va al cinema perché si desidera vedere un certo film e non si provoca un teppista perché se ne teme la reazione. Si tratta di una attività interpretativa basata su indizi comportamentali che elabora inferenze sulle motivazioni dei comportamenti. È difficile sovrastimare il ruolo che tale attività svolge nella vicenda delle persone. Di fatto la vita interiore di ciascuno di noi, articolata nella forma del comune flusso di coscienza, nonché la maggior parte delle relazioni interpersonali, sono continuamente mediate dall'idea che gli esseri umani siano mossi da stati psicologici interni.

Si noti che la strategia potrebbe funzionare persino se non fosse fondata nella realtà, se per esempio noi tutti non fossimo altro che zombies, ossia automi privi di consapevolezza. La differenza tra gli zombies della filosofia e quelli dei film è che questi ultimi sono riconoscibili macroscopicamente. Si muovo impacciati, hanno occhi spiritati e di norma non hanno una bella cera. Al contrario, gli zombies filosofici sono completamente indistinguibili dalle persone comuni. Se tu fossi uno zombie, nessuno se ne accorgerebbe, perché il tuo comportamento apparirebbe, almeno a prima vista, del tutto normale. Gli zombies filosofici si trovano al centro di un acceso dibattito sulla natura della coscienza, precisamente sul suo ruolo e sull'eventuale vantaggio che c'è ad essere consapevoli di se stessi [Chalmers 1996]. Se, infatti, un essere umano ipoteticamente privo

di consapevolezza fosse realmente indistinguibile dal suo doppione consapevole, allora ci si potrebbe chiedere davvero se la coscienza serve a qualcosa. Ma gli zombies sono utili espedienti anche per discutere del ruolo dell'attribuzione degli stati psicologici nella predizione comportamentale. Il punto è che anche se i nostri simili fossero degli zombies, non potremmo trattenerci dal tentativo di predirne il comportamento attribuendo loro degli stati mentali: e ciò che è più interessante è che la strategia funzionerebbe lo stesso perché, per definizione, il comportamento degli zombies è indistinguibile da quello normale. Detto altrimenti, la strategia in questione potrebbe rivelarsi efficace dal punto di vista predittivo anche se si mostrasse infondata dal punto di vista teorico.

L'attività che stiamo prendendo in considerazione è nota con molti nomi, tra cui «lettura della mente». «teoria della mente», «mentalizzazione», «psicologia del senso comune» e «psicologia ingenua».

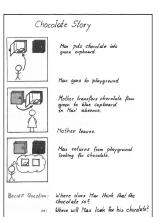


fig. 1.2. Il test della falsacredenza (disegnodi Josef Perner). Fonte:WIMMER e PERNER[1983]

Nel 1978 David Premack e Guy Woodruff și sono chiesti come și possa stabilire quando un individuo è in grado di considerare il comportamento altrui come intenzionale. Il loro articolo riguardava l'osservazione degli scimpanzé, ma ha aperto un modo nuovo di investigare l'attribuzione psicologica anche negli esseri umani. Una prima risposta alla domanda di Premack e Woodruff è arrivata cinque anni più tardi, grazie a un saggio di Heinz Wimmer e Josef Perner [1983]. La storia più comune relativa al loro esperimento va all'incirca come segue (fig 1.2). Un primo bambino, di nome Max, mette della cioccolata in una scatola verde ed esce dalla stanza. La madre compare sulla scena e sposta la cioccolata nella scatola blu. A questo punto Max rientra nella stanza e cerca la cioccolata. Si immagini ora di chiedere a un secondo bambino, che ha assistito a tutta la storia, dove secondo lui Max cercherà la cioccolata o dove penserà che si trovi Come risponderà il secondo bambino?

Qualunque persona adulta e normale comprende che le conoscenze di Max non gli permettono di cercare la cioccolata nel posto giusto e risponde adottando il punto di vista delle credenze erronee di Max e non quello della realtà

Wimmer e Perner hanno scoperto che fino a circa quattro anni di età i bambini rispondono invece utilizzando il punto di vista della realtà e affermano pertanto che secondo loro Max cercherà la cioccolata nella scatola blu. L'esperimento di Wimmer e Perner, da cui è scaturito un protocollo sperimentale noto come test della falsa credenza, è ben congegnato perché è basato su una situazione in cui fa differenza rispondere facendo leva sulla realtà o sulle credenze altrui, dato che la credenza della persona di cui stiamo cercando di prevedere il comportamento è falsa. Se un individuo è in grado di attribuire una credenza falsa. possiamo dedurne che è in grado di attribuirne una e che non sta rispondendo usando ciò che egli sa o vede.

Nel 1985 Simon Baron-Cohen, Uta Frith e Alan Leslie hanno provato il test con tre gruppi di bambini: affetti da autismo, normali e con sindrome di Down. Hanno scoperto che i bambini affetti da autismo avevano prestazioni significativamente peggiori sia dei bambini normali sia di quelli con sindrome di Down e ne hanno dedotto che l'incapacità di attribuire alle altre persone credenze e desideri è una caratteristica specifica dell'autismo che è indipendente dall'eventuale ritardo mentale. Il test della falsa credenza e più in generale l'idea che i bambini sviluppino la capacità di leggere la mente altrui nei primi due anni di vita sulla base di una predisposizione innata sono stati al centro di una vivace controversia. Nel complesso si può ritenere che si tratti di acquisizioni scientifiche abbastanza salde [Leslie 1987; Baron-Cohen 2000; Bloom e German 2000; Csibra e Southgate 2006: Ruffman e Perner 2005: Leslie 2005: Riggs 20051.

Secondo la maggior parte degli studiosi ciò che i bambini normali sviluppano nei primi due anni di vita e che possiedono in modo maturo intorno ai quattro anni di età, e che d'altra parte i soggetti autistici faticano a sviluppare del tutto, è una «teoria della mente», ossia un insieme generalmente implicito di conoscenze che noi tutti consultiamo per produrre le nostre inferenze sul comportamento altrui [vedi anche Baron-Cohen 1995: 2003]. Come alternativa al modello di spiegazione della Teoria della mente è stata avanzata l'ipotesi simulazionista, secondo la quale quando prevediamo il comportamento altrui usando l'attribuzione psicologica in realtà stiamo simulando le altre persone, probabilmente usando il sistema dei neuroni specchio [Gordon 1995: 1996: Heal 1998: Gallese e Goldman 1998]. Ci mettiamo nei panni degli altri e ci chiediamo cosa faremmo noi se fossimo in quelle circostanze, poi mettiamo offline il frutto della decisione, che quindi non produce effetti comportamentali sul nostro comportamento, e l'attribuiamo agli altri. È possibile forse integrare la teoria della mente e il simulazionismo congetturando che i processi simulativi stiano spesso alla base della predizione comportamentale, ma supponendo nello stesso tempo che nel suo funzionamento vadano incluse anche le conoscenze psicologiche intuitive e le conoscenze relative alla particolare mente della persona che stiamo tentando di simulare [Perconti 2003]. Ma il dibattito è ancora acceso e tra gli studiosi non c'è ancora un accordo unanime [vedi, per esempio, Saxe 2005].

Un'altra espressione impiegata per alludere al genere di capacità che stiamo prendendo in considerazione è «cognizione sociale». L'espressione «cognizione sociale» è più comprensiva di quelle precedenti dal momento che essa allude

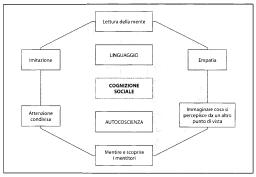


fig. 1.3. Glielementidella cognizionesociale.

all'insieme dei processi cognitivi che mediano le relazioni intersoggettive. I principali elementi della cognizione sociale sono - oltre la stessa lettura della mente - l'imitazione, l'attenzione condivisa, la capacità di mentire e di individuare le menzogne altrui, la capacità di immaginare cosa si percepisce da un punto di vista diverso dal proprio, l'empatia - ossia il lato emotivo della mentalizzazione, e - sebbene in una posizione diversa - anche l'autocoscienza e il linguaggio (fig. 1.3).

L'insieme di tali capacità, più o meno in gioco simultaneamente, rende possibile le forme tipiche della socialità umana. Con l'espressione «cervello sociale» (social brain) și fa riferimento și circuiti neuronali dedicati all'elaborazione delle attività prima menzionate e alla possibilità che essi costituiscano un modulo neuronale Beer e Ochsner 2006: Harris 2003: Adolphs 1999]. È grazie alla cognizione sociale che nella storia evolutiva umana sono diventate possibili le complesse pratiche culturali che rendono peculiare il posto della nostra specie nel regno animale [cfr. Ferretti 2006].

Secondo Michael Tomasello [1999] la cognizione sociale rappresenta anche la soluzione di un enigma evolutivo che secondo il suo parere sarebbe altrimenti irrisolvibile. Per apprezzare l'enigma occorre partire dalla circostanza che gli esseri umani e i primati moderni si sono separati nella linea filogenetica cinque o sei milioni di anni fa [Gee 1999, 202: Dawkins 2004, 88 ss.]. Ciò pone il seguente problema [Tomasello 1999, 21]:

I sei milioni di anni che separano gli esseri umani dalle altre grandi scimmie antropomorfe sono, in termini evolutivi, un tempo molto breve, tanto che gli uomini e gli scimpanzé moderni condividono qualcosa come il 99% del patrimonio genetico [...]. Vi è dunque un problema di tempo. In effetti, non c'è stato abbastanza tempo perché la normale evoluzione biologica basata sulla variazione genetica e sulla selezione naturale creasse, una dopo l'altra, le abilità cognitive necessarie agli esseri umani per inventare e mantenere tecnologie e tradizioni d'uso degli strumenti, forme di comunicazione e di rappresentazione simbolica, organizzazioni e istituzioni sociali in tutta la loro complessità.

La cognizione sociale sarebbe la soluzione a questo enigma dal momento che «postula uno e un solo adattamento biologico, che può essere avvenuto in qualunque momento dell'evoluzione umana, anche in tempi abbastanza recenti», anche se presumibilmente prima dello sviluppo del linguaggio [ibidem, 25]. Tale abilità ha permesso agli esseri umani di sviluppare una cultura simbolica in cui le generazioni successive hanno potuto ereditare da quelle precedenti non solo i loro geni, ma anche le conoscenze. Così la linea culturale dello sviluppo si è aggiunta a quella biologica e ha consentito alla specie umana di diventare ciò che è adesso [Simão 2001] (cfr. infra, cap. VI. § 1.1).

Possiamo supporre che nella storia evolutiva della specie umana la cognizione sociale sia stata selezionata sulla base delle abilità di base condivise anche dagli altri primati e che, dapprima sulla sua base e successivamente facendo leva sul linguaggio verbale, l'evoluzione abbia potuto via via assumere un ritmo culturale invece che soltanto biologico. In questo modo, dall'unione prodigiosa delle capacità elementari proprie della cognizione sociale con quelle rese possibili grazie al linguaggio verbale, la specie umana ha potuto guadagnare in tempi relativamente rapidi il ruolo predominante che oggi ha sulla Terra.

Ciò che ora dobbiamo prendere in considerazione è il ruolo che la cognizione sociale e la mentalizzazione hanno nell'elaborazione del linguaggio. Un primo campo di interesse a questo riguardo è oggi in voga in un'area di ricerca nota come pragmatica cognitiva (cfr. supra, § 3.4). Altri ambiti in cui la lettura della mente produce i suoi effetti linguistici sono la competenza indicale, l'elaborazione del significato figurato e delle intenzioni del parlante, nonché l'acquisizione del vocabolario

4.1.1. Gli indicali

Gli indicali, o deittici, sono una classe di espressioni linguistiche molto varia la cui caratteristica più macroscopica è il fatto che il loro riferimento dipende dal contesto [Kaplan 1977: 1989; Perry 2001; Perconti 2003], Prendiamo in considerazione il pronome personale io, l'espressione indicale più diffusa. Se compare come soggetto di un enunciato, designa colui che parla o scrive e, dato che lo stesso enunciato può essere proferito da più persone, designerà individui diversi secondo il contesto di proferimento e di valutazione. Di fatto qualsiasi individuo che sia in grado di pronunciare un enunciato di senso compiuto in cui compaia il pronome di prima persona singolare è un «io».

Tale genere di dipendenza dal contesto è un fenomeno universale tra le lingue

e molto diffuso al loro interno [Diessel 1999]. L'intero sistema pronominale funziona in questo modo, così come molte espressioni avverbiali (come a sinistra di e sotto), i dimostrativi (come questo e quello) e il riferimento temporale dei verbi. Il riferimento delle parole è ciò che esse designano. Per esempio, il riferimento della parola cane coincide con ciascun membro della classe dei cani. Il riferimento delle frasi è il loro valore di verità, ossia il fatto che esse sono, o vengono ritenute, vere o false. Così il riferimento della frase «Londra è la capitale della Gran Bretagna» è il suo essere (ritenuta) vera. Questa idea del riferimento delle parole e delle frasi ha bisogno di specificazioni relativamente a espressioni come «Babbo Natale» e «sebbene», nonché a frasi come «Chiudi quella porta!». «Che Dio mi aiuti questa sera!» o «Maria ha sognato di aver visto Giovanni finalmente scomparso».

Prescindiamo tuttavia in questa sede dalla forma che tali specificazioni possono assumere e concentriamo la nostra attenzione su un fatto diverso, relativo alla natura contestuale del riferimento linguistico. Se per esempio ci si propone di essere buoni usando una frase come: «Prometto che sarò buono», il riferimento della frase in questione, ossia il suo essere (ritenuta) vera o falsa può cambiare secondo il momento in cui viene pronunciata. Di fatto tutto il sistema di espressione linguistica è indicizzato secondo il tempo e lo spazio e una parte consistente di esso fissa riferimenti spazio-temporalmente determinati.

L'indicizzazione spazio-temporale e la dipendenza dal contesto del riferimento linguistico sono i principali fenomeni evidenziati dall'esame delle espressioni indicali. Ma c'è un'altra caratteristica del riferimento di questa classe di espressioni linguistiche che è importante sottolineare. Spesso il riferimento delle parole e delle frasi avviene per tramite del soddisfacimento di una proprietà. Il caso migliore per comprendere questo fenomeno è quello delle descrizioni definite, ossia espressioni come «il calciatore che ha segnato di più nella storia della Juventus» oppure «il presidente della Telecom». Per fissare il riferimento di questo genere di espressioni occorre stabilire quale individuo soddisfa la proprietà che esse istanziano. Di fatto chiunque istanzi la proprietà in questione nel momento in cui la descrizione viene valutata è colui a cui essa si riferisce.

Il punto che interessa qui evidenziare è che le espressioni indicali non funzionano nel modo appena menzionato, in quanto non istanziano alcuna proprietà al loro interno. Essere un «io», un «tu», un «questo» o un «quello» non è questione di soddisfare alcuna proprietà concettuale. Piuttosto è questione di essere l'oggetto o l'evento a cui si sta alludendo in una conversazione o di essere il parlante o l'interlocutore nel contesto. Ciò mostra che la linea di contrasto sostenuta da McDowell contro l'idea dei contenuti non concettuali, a cui avevamo fatto cenno in precedenza (cfr. supra, § 3), si rivela insoddisfacente, dal momento che egli considerava come dipendente da un concetto una espressione come «quella sfumatura», che invece prescinde da ogni riferimento concettuale proprio a motivo della sua natura dimostrativa o indicale.

A questo punto possiamo avanzare nella nostra analisi, giungendo a un aspetto particolarmente rilevante per la presente argomentazione. Il punto è che la dipendenza dal contesto e la natura non concettuale della regola del riferimento delle espressioni indicali consentono di evidenziare una prima modalità in cui la mentalizzazione esercita la sua influenza sul funzionamento del linguaggio verbale. La competenza coinvolta nel fissare il riferimento delle espressioni indicali richiede. infatti, una capacità di seguire una regola che non è completamente affidata alle convenzioni linguistiche, ma che al contrario richiede il coinvolgimento di un processo cognitivo più generale come la lettura della mente.

La competenza nella regola linguistica della lingua italiana che prescrive di usare l'articolo determinativo lo, invece che il, davanti a parole che iniziano con on. come gnocco o gnomo, non richiede alcun particolare coinvolgimento di processi cognitivi generali. Il caso della competenza indicale è diverso. Essa infatti sembra profondamente influenzata dallo scambio delle intenzioni comunicative tra gli attori della conversazione. Da sole le regole linguistiche non garantiscono che il riferimento delle espressioni indicali sia fissato automaticamente, ossia facendo semplicemente leva sulle convenzioni linguistiche e senza tener conto delle intenzioni del parlante. Non basta conoscere le convenzioni della lingua in cui ci si sta esprimendo e osservare il contesto nel modo appropriato. Occorre anche indovinare le intenzioni comunicative del parlante.

Per la verità l'automaticità ha un ruolo significativo nel riferimento indicale. Infatti le espressioni indicali denotative, come i pronomi personali e i dimostrativi, spesso possono fissare il loro riferimento in modo quasi automatico. Consideriamo il riferimento come completamente automatico se le intenzioni del parlante non possono modificarlo affatto. I candidati migliori come indicali automatici sono le parole io, ora e qui. A prima vista sembra che in questi casi l'intenzione del parlante non conti nulla. Non importa cosa egli abbia in mente: io si riferisce sempre al parlante o allo scrivente, ora al tempo dell'emissione e qui al luogo dell'emissione. Eppure ci sono casi in cui le convenzioni linguistiche non sono sufficienti. Per esempio, si supponga che un professore sia assente dal suo studio in un giorno in cui è fissato il ricevimento degli studenti. Vedendo alcuni studenti che lo aspettano invano dietro la porta, un suo collega affigge sulla porta un post-it su cui scrive: «Io non sono qui oggi». In questo caso il riferimento del pronome non è quello atteso. Il collega scrive «io» e il pronome non si riferisce a lui. Ciò nonostante gli studenti comprendono e smettono di aspettare il loro professore. In base a che cosa il pronome personale della frase sul post-it non si riferisce allo scrivente, ma ad un'altra persona? L'unica risposta possibile sembra chiamare in causa l'intenzione comunicativa del parlante e quindi le capacità inferenziali degli ascoltatori [Corazza et al. 2002; Predelli 1998a; 1998b].

Ci sono quindi usi degli indicali «automatici» in cui l'intenzione del parlante è rilevante. Quest'ultima, d'altronde, è sistematicamente rilevante quando si impiega un dimostrativo. Se dico: «Mi passi quello, per piacere?», il riferimento del dimostrativo è proprio ciò che intendo. Non c'è, ovviamente, un arbitrio assoluto nel comportamento in questione: la fissazione dello sguardo, il dito indice puntato o altri ausilii del genere, insieme alle regole grammaticali dell'italiano che segmentano il sistema dei dimostrativi in un termine prossimale e uno distale,

limitano ciò a cui si può alludere usando la parola quello in modo competente. Ma ciò che il parlante intende quando usa il dimostrativo è comunque rilevante per fissare il riferimento e quindi la comprensione linguistica degli enunciati in cui esso compare assume anche la forma di un procedimento inferenziale relativo al modo in cui le intenzioni del parlante si sono manifestate nel suo comportamento comunicativo.

Il punto generale che importa sottolineare nella nostra argomentazione è che se comprendere il senso di un enunciato indicale è anche questione di indovinare le intenzioni del parlante, allora è anche questione di ricorrere ai processi di mentalizzazione. Detto altrimenti, se le cose stanno nel modo che abbiamo mostrato, allora la lettura della mente interviene a mediare la competenza indicale e, con ciò, una porzione assai significativa della pratica linguistica.

4.1.2. Il significato figurato e inteso

Si supponga di partecipare a una conversazione con degli amici e di commentare i modi un po' spicci di un comune conoscente. A un certo momento un interlocutore, alludendo all'incapacità del comune amico di risultare appropriato in una circostanza in cui si richiedeva di mostrare del tatto, afferma: «Sai, i carri armati vanno bene in guerra, ma nel giardino di casa rischiano di rovinare le rose!». Se ci si basasse esclusivamente sul significato letterale della frase, ciò che il nostro interlocutore ha appena affermato apparirebbe strano. Eppure, sullo sfondo della conversazione che abbiamo tratteggiato, quanto detto è del tutto appropriato. Come facciamo a comprendere il significato di questo genere di enunciati? La risposta a questa domanda deve includere il riferimento alla capacità di indovinare le intenzioni comunicative del parlante (cfr. supra, § 3.1).

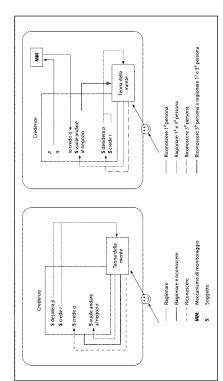
Ouando una metafora è consunta e ormai consegnata alle convenzioni linguistiche, come nel caso dell'abitudine a chiamare «gambe» i sostegni dei tavoli, non è necessario ricorrere ad alcuna capacità di lettura della mente, ma quando siamo di fronte a una metafora nuova e fresca, allora si tratta di tentare di capire cosa il nostro interlocutore intende dire. In questi casi, perché lo scambio comunicativo vada a buon fine, occorre tenere in considerazione, oltre che il senso letterale dell'affermazione, anche l'intenzione comunicativa del parlante. ossia ciò che egli sta provando a dirci e che presumibilmente sta sforzandosi di affermare.

Si tratta di figurarsi l'interlocutore come qualcuno che sta compiendo uno sforzo per comunicare qualcosa e, dato che il senso letterale delle cose che afferma non è pertinente nella situazione comunicativa in questione, di attribuirgli una intenzione comunicativa ragionevole che pure non traspare direttamente dalle parole che pronuncia. In questosenso comprendere il senso di una frase metaforica comporta anche il tentativo di leggere nella mente del nostro interlocutore, invece che calcolare semplicemente il senso delle singole parole servendosi delle regole sintattiche di composizione. Del resto, i processi cognitivi di mentalizzazione sono ben visibili anche dal lato della pianificazione del discorso, dal momento che spesso anche il parlante «si serve delle aspettative, delle credenze, delle intenzioni che condivide con i suoi interlocutori per comunicare qualcosa in più del (o diverso dal) senso letterale delle espressioni che utilizza» [Bianchi 2006, 51].

A conclusioni analoghe si arriva anche prendendo in considerazione il fenomeno delle implicature conversazionali. Paul Grice, tra i più celebri teorici che nel Novecento hanno tentato di fornire una caratterizzazione del significato in termini di intenzione, ha avanzato l'idea che in condizioni normali i partecipanti alla conversazione adottano un comportamento cooperativo [Grice 1957; 1989]. Essi cioè si sforzano di conformare il proprio contributo conversazionale a quanto è richiesto dalla conversazione a via stanno prendendo parte [Principio di cooperazione). Anche Willard V.O. Quine [1960] e Davidson [1984] hanno sottolineato che il dialogo presuppone una sorta di Principio di carità tra i parlanti, in base al quale nella conversazione si parte sistematicamente dall'assunzione che il nostro interlocutore sia un agente razionale che sta sforzandosi di dire qualcosa di sensato.

Questo, ovviamente, non vuol dire che le norme che discendono da tali assunti non possano essere violate o che talvolta non falliscano miseramente, ma esse rimangono comunque una condizione di possibilità della comunicazione verbale ordinaria. Prendiamo in considerazione una semplice implicatura conversazionale. Supponi che Ugo dica a Elena: «Non c'è più birra in frigo», e che Elena rispondar «Più tardi esco». Apparentemente la replica di Maria non sembra pertinente, eppure sullo s'ondo delle credenze condivise tra i due Ugo non faticherì a riconoscere l'intenzione di Elena e ciò che quest'ultima sta implicitamente affermando (sugli aspetti pragmatici del linguaggio cfr. anche supra. 6, 3-4).

La mediazione della lettura della mente nella metafora e più in generale negli aspetti pragmatici del linguaggio è suggerita, oltre che da osservazioni comportamentali come quelle precedenti, anche da una serie di evidenze neuroscientifiche. Diversi studiosi hanno evidenziato il ruolo svolto da aree del cervello diverse da quelle classicamente ritenute responsabili dell'elaborazione linguistica, presenti sia nell'emisfero sinistro sia in quello destro [Damasio et al. 1996; Sheehva e Haines 2004: Jung-Beeman 2005: Carota et al. 2005] (vedi anche cap. VI. § 2.2). È interessante notare che il ruolo dell'emisfero destro sembra particolarmente significativo per quanto riguarda l'aspetto pragmatico del linguaggio. Gli individui che hanno un danno a tale emisfero, infatti, mostrano difficoltà nella comprensione sia degli aspetti prosodici del linguaggio sia di quelli emotivi. Essi inoltre hanno difficoltà con gli aspetti non verbali della comunicazione e non comprendono bene le richieste quando sono effettuate in modo indiretto, analogamente a quanto accade con il linguaggio figurato e le frasi idiomatiche [Kasher et al., 1999; Bottini et al., 1994]. Probabilmente una visione equilibrata dei dati finora disponibili spinge a ritenere che nel cervello esistano delle reti neuronali bilaterali, che coinvolgono anche aree nell'emisfero destro omologhe a quella di Wernicke dell'emisfero sinistro, che sono responsabili dell'elaborazione degli aspetti figurati e metaforici del linguaggio verbale [Mashal et al. 2005]. D'altra parte, il ruolo dell'emisfero destro nei compiti di mentalizzazione – spe-


cialmente della corteccia prefrontale – è suggerito da diversi studi che cercano

di rintracciare i correlati neuronali della lettura della mente [Abu-Akel 2003a: Vogeley et al. 2001: Gallagher e Frith 2003: Shallice 2001: Bird et al. 2004). Inoltre ci sono evidenze che mostrano che i soggetti affetti da malattie che compromettono in qualche modo la lettura della mente hanno anche difficoltà con l'elaborazione del linguaggio figurato e metaforico. L'analisi è stata condotta sia con i soggetti autistici sia con gli schizofrenici, entrambi affetti da disturbi alla lettura della mente.

Ci sono diverse ipotesi che tentano di spiegare le cause dell'autismo (cfr. cap. VI, § 3.2.1). Alcune spiegazioni fanno direttamente appello a cause neurochimiche, precisamente al ruolo del sistema dopaminergico e serotonergico nel cervello [Abu-Akel 2003b]. Un'altra spiegazione interpreta i disturbi dell'autismo come deficit genuini, mentre quelli schizofrenici come dovuti ad una sorta di iper-teoria della mente, particolarmente evidente nei soggetti schizo-paranoidi [Abu-Akel e Bailey 2000; Abu-Akel 2003a]. I pazienti schizofrenici non riuscirebbero a usare la mentalizzazione in modo appropriato, finendo così per sovrastimare il ricorso alla strategia intenzionale per rendere conto dei propri e degli altrui comportamenti. Il risultato è un comportamento abnorme dal punto di vista della lettura della mente. Il genere di anormalità attributiva esibita dai soggetti schizofrenici è istruttiva perché suggerisce che la lettura della mente, in condizioni normali, è moderata dalle altre capacità e conoscenze dell'individuo. A un livello di analisi molto generale potremmo dire che perché la lettura della mente svolga correttamente il suo compito occorre che sia governata anche dal buon senso e in un certo senso la schizofrenia può essere considerata proprio come una malattia del senso comune [Stanghellini 2006].

Steven Stich e Shaun Nichols hanno proposto una interpretazione ancora diversa relativamente ai disturbi di lettura della mente nei soggetti autistici e schizofrenici [Nichols e Stich 2003; 2004]. Essi hanno avanzato l'ipotesi che la lettura delle menti altrui e della propria sia governata da meccanismi differenti. Mentre l'interpretazione degli stati mentali altrui sarebbe regolata dalla Teoria della mente, quando rivolgiamo lo sguardo verso noi stessi utilizzeremmo un altro sistema cognitivo, che essi chiamano Meccanismo di Monitoraggio (fig.

Il lavoro svolto dal Meccanismo di Monitoraggio è piuttosto semplice: prende uno stato mentale come input e genera la credenza che ci si trova in quello stato mentale. L'operazione è simile al meccanismo linguistico dell'incassamento. Un soggetto S ha una credenza con il contenuto proposizionale p. attiva il Meccanismo di Monitoraggio e genera una seconda credenza, di livello superiore, di trovarsi in p, ottenuta incassando p nella struttura «io credo che _» [Nichols e Stich 2003, 160-161]. Secondo Stich e Nichols in alcuni pazienti affetti da schizofrenia sarebbe preservata la Teoria della mente mentre sarebbe compromesso il Meccanismo di Monitoraggio, mentre nei soggetti affetti da autismo di norma accadrebbe il contrario. Restano da prendere in considerazione le conseguenze sul piano dei deficit linguistici di questa promettente teoria. Ma rimane il fatto che l'influenza dei processi di mentalizzazione sul linguaggio figurato, sulla comprensione del significato inteso, nonché più in

A sinistra uno schema della teoria della mente per il riconoscimento e il ragionamento sugli stati mentali altrui, a destra uno schema della teoria del meccanismo di monitoraggio per la consapevolezza delle proprie credenze.

fig. 1.4. Leggere nella propria e nell'altrui mente secondo Nichols e Stich (2003).

generale sugli aspetti pragmatici della lingua, sembra confermata sia dalle osservazioni comportamentali della pratica linguistica comune, sia dalle evidenze neurofisiologiche disponibili, sia ancora dagli studi relativi ai soggetti schizofrenici e autistici.

4.1.3. L'acquisizione del vocabolario

All'inizio delle Ricerche filosofiche [1953], Wittgenstein cita un celebre passo delle Confessioni di Agostino in cui l'autore tenta di ricordare come da bambino imparava il significato delle parole nuove: «Quando gli adulti menzionavano qualche oggetto e in base a quel suono protendevano il corpo nella sua direzione. io osservavo e tenevo a mente che così, con quel suono, che emettevano quando volevano indicare l'oggetto, essi lo chiamavano» (Agostino, Confessioni, I, 8. 13). Come faceva il piccolo Agostino a fare l'inferenza in questione? La risposta che egli fornisce è basata sulle capacità dell'adulto di catturare l'attenzione mediante i gesti del corpo, le espressioni del volto e la direzione dello sguardo, e del bambino di interpretare correttamente l'intenzione comunicativa in questione.

Nell'immagine agostiniana Wittgenstein vede riflessa una idea del linguaggio che non gli piace affatto: da una parte la convinzione che la funzione delle parole è di stare per ciò che denominano e che questo è reso possibile dal fatto che il loro significato ha una origine associativa; dall'altra parte l'idea che i bambini comprenderebbero il significato delle parole tramite l'addestramento alle associazioni giuste. Wittgenstein è convinto che entrambe le idee siano sbagliate: è sospettoso nei riguardi dell'idea che il ruolo delle parole consista in generale nell'indicare le cose e non crede affatto che l'apprendimento del significato delle parole possa avvenire tramite una definizione ostensiva. Secondo il suo punto di vista, infatti, ogni definizione ostensiva può essere interpretata in modo diverso da come desidera il parlante. La sua ambiguità dipende anche dal fatto che nelle frasi che accompagnano il gesto di indicazione compare il dimostrativo questo. I dimostrativi, infatti, sono parole dal riferimento costitutivamente ambiguo e non c'è alcuna garanzia che il gesto ostensivo sia in grado di disambiguarle.

Prima di esaminare le conseguenze che lo scetticismo sulle definizioni ostensive esercita sul problema dell'acquisizione del lessico, occorre notare che in quest'ultimo fenomeno c'è qualcosa di sorprendente. Dai 12 ai 16 mesi il vocabolario del bambino raggiunge mediamente l'ampiezza di 50 parole. Nella fase successiva (17-24 mesi circa) assistiamo a una forte espansione del lessico che porta il numero delle parole conosciute ad alcune centinaia, da un minimo di 300 fino a circa 600 [Camaioni 2001, 91]. Steven Pinker ha calcolato che intorno ai 18 mesi i bambini imparano una parola nuova ogni due ore [Pinker 1994, 259]. Considerando questo genere di dati alcuni studiosi hanno parlato di «esplosione del vocabolario» riferendosi proprio all'acquisizione del lessico dei bambini di circa un anno e mezzo [Goldfield e Retznick 1990] (cfr. cap. V, § 3).

Come fa un bambino così piccolo a imparare una tale quantità di parole nuove? Secondo la risposta più tradizionale a questa domanda l'apprendimento sarebbe basato sull'associazione tra le parole da imparare e la situazione in cui esse occorrono. Il gioco dell'indicare e nominare contemporaneamente l'oggetto indicato è la situazione prototipica a cui pensa il teorico dell'associazione. Gli psicologi comportamentisti hanno sostenuto questo genere di posizione per molto tempo. Si sbaglierebbe tuttavia a considerare senz'altro l'associazionismo come una posizione del passato, dato che il comportamentismo versa oggi in condizioni critiche. Recentemente Linda Smith [2000a] ha sostenuto ancora una volta che imparare il significato di una parola equivale essenzialmente ad associare dei suoni con gli aspetti salienti della scena percettiva in cui occorre. Tuttavia la stessa Smith [2000b] ha notato che nello sviluppo del lessico l'associazionismo non è necessariamente un modo di sostenere il comportamentismo. L'apprendimento associativo, per esempio, può contemplare il riferimento a stati mentali interni. che il comportamentismo invece rifiuta sistematicamente.

Nel complesso l'approccio associazionista va incontro a numerose difficoltà. Viene dato un peso eccessivo al fatto che un termine sia usato mentre un oggetto è presente e al fatto che sovente è associato ad esso mediante una definizione ostensiva. La continuità della connessione nel tempo, infatti, non è in grado di escludere i fraintendimenti sistematici. Può essere necessario davvero tanto tempo perché un bambino a cui viene insegnato il significato del termine arancia si accorga che la sfericità o il colore arancione non era ciò a cui si alludeva. E, per quanto i bambini talvolta facciano confusioni di questo tipo, non si tratta della regola. Inoltre i bambini apprendono presto anche il significato delle parole astratte, che mal si adattano al modello dell'apprendimento in praesentia tipico dell'associazionismo. Infine, spesso non c'è contiguità spazio-temporale tra il proferimento della parola e la percezione dell'oggetto. La situazione ostensiva che l'associazionista ha in mente, infine, con la tipica alteranza dello sguardo dell'adulto tra il bambino e l'oggetto denominato, non è affatto una caratteristica presente in tutte le culture umane, come sarebbe necessario se il modello volesse rendere conto degli aspetti cognitivi dell'acquisizione del lessico [Marraffa e Meini 2005, 166 ss.: Meini 2004].

Probabilmente Wittgenstein si sbagliava a banalizzare la posizione di Agostino. Quest'ultimo, infatti, non è stato tanto un precursore dell'associazionismo. come egli credeva, quanto un sostenitore della tesi contraria. Agostino pensava che il modo in cui i bambini imparano delle parole nuove consista nel fare delle inferenze sul loro uso interpretando il comportamento degli adulti come se esprimesse delle intenzioni comunicative: «Non erano gli adulti, in effetti, a insegnarmi le parole presentandomele con un ordine didattico [...], ma ero io che me le insegnavo da solo con l'intelligenza che tu mi hai dato, mio Dio» (Agostino, Confessioni, I, 8. 13). Espresso con una terminologia contemporanea, potremmo dire che l'intelligenza a cui Agostino fa riferimento nell'acquisizione del vocabolario ha a che fare con i processi di mentalizzazione [Bloom 2000, 60 ss.; 2004, 3 ss.]. Forse dopo tutto Agostino non si sbagliava neppure a considerare come un dono di Dio tale forma di intelligenza, se consideriamo l'innatezza (di alcuni processi di mentalizzazione) come un modo moderno di alludere ai doni divini.

Tomasello si riferisce a questo genere di approccio chiamandolo teoria pragmatico-sociale dell'acquisizione del lessico [Tomasello 2003, 87]. In questa teoria sono messi in evidenza sia il fatto che il bambino impara il significato delle parole nuove in un mondo sociale già strutturato, costituito di routines e di giochi sociali, sia il fatto che egli prende parte a questo mondo munito delle proprie capacità cognitive, con particolare riferimento all'abilità di condividere l'attenzione con le altre persone e di interpretare le intenzioni altrui [ibidem]. Saper condividere una scena attentiva è un elemento decisivo per poter acquisire nuove parole. Ed è proprio ciò che i bambini imparano a fare nel secondo anno di vita, quando prende corpo il fenomeno che abbiamo menzionato dell'esplosione del vocabolario. Hanno imparato a seguire lo sguardo degli adulti e comprendono che l'alternanza dello squardo tra loro e un oggetto equivale al tentativo di richiamare la loro attenzione su quell'oggetto. Comprendono e iniziano ad usare i gesti di indicazione. Sulla base delle capacità di condivisione di una scena attentiva possono pertanto esercitarsi i tentativi di interpretare i comportamenti delle altre persone come dotati di significati intenzionali. L'interpretazione dei comportamenti degli adulti volti a insegnare l'uso delle parole nuove non è che un caso particolare di esercizio di questa nuova capacità che il bambino ha appena sviluppato.

Per le ragioni che abbiamo appena messo in luce, secondo Tomasello [ibidem, 91] la teoria pragmatico-sociale, a differenza di quella associativa, riesce a connettere l'apprendimento linguistico sia alle competenze attentive sia ai contesti culturali in cui il bambino si trova. Essa, inoltre, facendo leva sulle capacità di attenzione condivisa e di prima mentalizzazione che sorgono proprio nel secondo anno di vita è in grado di spiegare perché l'acquisione del lessico ha la straordinaria espansione che abbiamo notato in un periodo cruciale dello sviluppo.

4.2. La percezione nel linguaggio

La lingua che parliamo condiziona il modo in cui percepiamo il mondo o piuttosto è il modo in cui percepiamo il mondo che condiziona come ne parliamo? È una domanda classica, la cui investigazione ha sempre attratto gli studiosi interessati al rapporto tra il pensiero e il linguaggio. Ancora oggi la controversia non si è affatto esaurita e i fautori della tesi secondo cui la variabilità linguistica è vincolata da alcuni elementi universali di natura percettiva si scontrano contro coloro che ritengono che l'organizzazione delle lingue sia sganciata dal modo in cui la percezione è universalmente strutturata. Peter Gordon ha recentemente [2004] fornito un resoconto relativo a una tribù di persone che vivono nell'Amazzonia e che dispongono di risorse linguistiche in grado di denominare soltanto «uno», «due» o «molti» oggetti. Secondo la sua ricostruzione i membri della tribù dei Pirahã avrebbero difficoltà a numerare quantità superiori a due o tre oggetti. Basandosi sulla considerazione che la lingua dei Pirahã sarebbe incommensurabile rispetto alle lingue che dispongono di sistemi di numerazione più complessi, Gordon considera il suo resoconto come un caso di determinismo linguistico forte.

Il determinismo linguistico è una posizione, che si suole far risalire a Benjamin Lee Whorf, secondo cui il fatto di parlare una certa lingua costituisce un vincolo invalicabile nella categorizzazione del mondo. Per dirla con alcune celebri parole di Whorf [1956, 169]:

Il sistema linguistico di sfondo (in altre parole la grammatica) di ciascuna lingua non è soltanto uno strumento di riproduzione per esprimere idee, ma esso stesso dà forma alle idee, è il programma e la guida dell'attività mentale dell'individuo, dell'analisi delle sue impressioni, della sintesi degli oggetti mentali di cui si occupa [...] Analizziamo la natura secondo linee tracciate dalle nostre lingue. Le categorie e i tipi che isoliamo dal mondo dei fenomeni non vengono scoperti perché colpiscono ogni osservatore; ma, al contrario, il mondo si presenta come un flusso caleidoscopico di impressioni che deve essere organizzato dalle nostre menti, il che vuol dire deve essere organizzato in larga misura dal sistema linguistico delle nostre menti

È importante distinguere la posizione di Whorf da quella di Humboldt, a cui

spesso viene accostata. Humboldt, infatti, non credeva che esistessero concetti concepiti in una data lingua inaccessibili ai parlanti di una seconda lingua. Sosteneva una posizione allo stesso tempo più moderata e sofisticata. Riteneva che ciascuna lingua riflette un proprio carattere, in parte derivato dalla cultura della comunità dei parlanti e rintracciabile nella grammatica, nella prosodia e nella struttura del lessico, e che tale carattere esercita una forza sul parlante che lo conduce a concepire il mondo in modo conseguente. Niente vieta, tuttavia, al parlante di forzare a sua volta il carattere della lingua per spingerla a concepire le cose in un modo nuovo. Le lingue infatti, per Humboldt, sono simili agli organismi viventi e perciò mutano continuamente grazie all'azione dei parlanti. Torniamo quindi ai Pirahã ed esaminiamo, sulla base delle considerazioni precedenti, le tre possibilità in gioco. Il sistema numerico di tale lingua potrebbe impedire ai parlanti di numerare gli oggetti di quantità superiore a due o tre elementi (ammesso che il resoconto di Gordon sia affidabile, cosa che per esempio Daniel Casasanto [2005] mette in discussione). Oppure il loro sistema numerico potrebbe impedire ai Pirahã di concepire gruppi di oggetti superiori a due unità. Gordon [2005] ha negato questa possibilità, sostenendo che è ben possibile che gli individui abbiano dei concetti, anche numerici, senza disporre di dispositivi linguistici per esprimerli. Infine, si potrebbe persino ritenere che, a motivo del loro elementare sistema numerico, i Pirahã non siano in grado di vedere gruppi di oggetti che superino le due unità. Dopo tutto, per vedere un insieme di tre unità come un insieme di tre unità, forse occorre disporre delle risorse linguistiche e concettuali corrispondenti.

Il caso dei Pirahã, che qui prendiamo semplicemente come spunto esemplificativo, mostra come il rapporto tra percezione, linguaggio e pensiero sia controverso. Eppure, nonostante la discussione non sia affatto conclusa, la tendenza prevalente negli ultimi tempi consiste nell'evidenziare i vincoli che la percezione esercita sull'organizzazione linguistica. Secondo molti studiosi si fa un passo avanti nella comprensione dei processi cognitivi quando se ne comprende la natura «incorporata», ossia radicata nel corpo e da esso dipendente. Ouesta tendenza di studi, nota come embodied cognition, conduce soprattutto a riflettere sui vincoli percettivi che i sistemi di senso esercitano sui processi cognitivi superiori, incluso il linguaggio verbale (cfr. cap. III, § 2).

Si può notare, per esempio, quanto la categorizzazione dello spazio dipenda dal modo in cui percepiamo il nostro corpo [Violi 1991; 1997]. Spinti dalla convinzione che l'organizzazione delle lingue non rifletta altro che convenzioni sociali e vincoli strutturali interni, si potrebbe pensare che la categorizzazione linguistica dello spazio possa seguire qualsiasi modello di riferimento. Al contrario, un esame accurato del modo in cui nelle lingue viene codificata la rappresentazione dello spazio circostante evidenzia come quest'ultima segua da vicino la percezione del proprio corpo. La casa, le automobili e la maggior parte degli oggetti di uso comune vengono usualmente rappresentati tramite un processo di antropomorfizzazione basato sulla comune percezione corporea. Lo stesso procedimento metaforico si applica anche alla categorizzazione delle entità immateriali. Questo conduce in molte lingue e culture a rappresentare l'interno della casa come l'interno del corpo e i suoi varchi come se fossero orifizi. Analogamente le automobili hanno «musi» e «occhi» anteriori e «sederi» posteriori. I tavoli, da parte loro, hanno «gambe» come sostegni, mentre i discorsi hanno delle «code» e, quando sono ben fondati, anche un loro «piede».

Nel 1969 Brent Berlin e Paul Kay hanno suggerito che la categorizzazione dei colori nelle varie lingue del mondo è organizzata in modo uniforme sulla base di alcuni colori focali. Secondo il loro punto di vista tali colori focali avrebbero una base universale nell'organizzazione della visione umana e ciò spiegherebbe perché essi vengono regolarmente scelti come gli esempi migliori per le parole che designano i colori nelle diverse lingue del mondo. Questa inotesi è stata sfidata dai relativisti e dai culturalisti, ma nel complesso l'intuizione fondamentale secondo cui la segmentazione lessicale della percezione dei colori è vincolata da alcuni universali percettivi di tipo visivo sembra aver retto all'urto delle critiche [Regier, Kay e Cook 2005].

5. FUNZIONE COMUNICATIVA E COGNITIVA

Finora abbiamo notato come le scienze cognitive del linguaggio siano largamente caratterizzate dal rifiuto della svolta linguistica e come a essa venga preferita la tesi secondo cui ci sono numerose e importanti capacità cognitive che non hanno natura linguistica e che in molti casi sono indispensabili per l'esercizio della stessa funzione del linguaggio. Negli ambienti cognitivisti alla tesi della priorità linguistica viene così spesso preferita la tesi della priorità mentale. Un altro modo in cui viene affrontato il rapporto tra il linguaggio e il resto delle funzioni cognitive consiste nel domandarsi se esso ha una funzione prevalentemente comunicativa o una funzione cognitiva nei confronti del pensiero. Nella controversia sulla funzione primaria del linguaggio non è in discussione il fatto di comune osservazione che entrambe le funzioni siano genuinamente presenti nell'esercizio linguistico. Ciò che è realmente in gioco è, appunto, soltanto quale

sia la funzione prevalente e primaria. Esso serve essenzialmente a esprimere i pensieri o piuttosto a formarli?

Occorre notare che quella espressiva e quella comunicativa non devono essere necessariamente considerate come una stessa funzione. Johann Gottfried Herder. per esempio, le distingueva attentamente considerando la funzione espressiva come contraddistinta dalla immediatezza e la funzione comunicativa come caratterizzata dall'intenzione. Nel Saggio sull'origine del linguaggio, a proposito del linguaggio animale, egli afferma [1770, 49]:

Per ogni animale [...] il linguaggio è l'estrinsecazione di rappresentazioni sensoriali così intense da tradursi in istinti, vale a dire: il linguaggio - come i sensi, le rappresentazioni, gli istinti – nell'animale è innato e a lui immediatamente connaturale.

Nel caso degli animali gli stati interni proromperebbero quindi spontaneamente e senza la mediazione di alcuna intenzione o scelta consapevole. L'idea che Herder ha della funzione espressiva del linguaggio è quindi quella di segnali privi di intenzione che prorompono senza controllo dal petto degli animali.

Analogamente a quanto talvolta accade anche con i segnali non intenzionali degli esseri umani, come le urla impulsive di dolore o i rossori di vergogna, gli altri animali sarebbero vittime del loro stesso sistema espressivo, costretti a manifestare all'esterno tutto ciò che dentro di essi si agita a tal punto da non poter più essere trattenuto. A lungo si è ritenuto che i sistemi espressivi degli altri animali non fossero altro che voci dal sen fuggite senza controllo. Griffin [1992] ha chiamato questa idea della comunicazione animale GOP, da groans of pain, in italiano «gemiti di dolore». Secondo questa prospettiva i segnali animali sarebbero simili ai battiti delle palpebre o ai rossori di vergogna nella specie umana. Ma una serie di evidenze mostrano che talvolta i segnali degli altri animali sono sensibili alla presenza di un uditorio e ciò esclude l'interpretazione GOP, in base a cui la presenza di un pubblico non dovrebbe fare alcuna differenza nella produzione del segnale.

Diverso è il caso della comunicazione in quanto frutto di un proposito esplicito. Oui il linguaggio è chiaramente concepito e usato come strumento per rendere manifesto un contenuto mentale che altrimenti resterebbe nascosto. Naturalmente il teorico che enfatizza la funzione comunicativa del linguaggio è incline a ritenere che il pensiero sia, in generale, autonomo dalla sua espressione. Per il teorico della funzione comunicativa il pensiero è indipendente dal linguaggio e ha priorità logica e temporale su quest'ultimo [Ferretti 2005, 8]. Anzi, tutta la forza che il linguaggio esercita nelle relazioni interpersonali non avrebbe altra fonte che quella derivata del pensiero che esso esprime. Il linguaggio ha sì intenzionalità, esso cioè è autenticamente in grado di rappresentare internamente un contenuto, ma tale funzione è in grado di svolgerla soltanto in forza del fatto che veicola un pensiero. Solo quest'ultimo avrebbe intenzionalità intrinseca, mentre quella del linguaggio non sarebbe altro che derivata [Searle 1983].

Anche Chomsky distingue tra funzione comunicativa ed espressiva, anche se lo fa in modo differente da quello appena menzionato. Il linguaggio, secondo il suo punto di vista [2000, 75].

non va considerato come un sistema di comunicazione. Esso è piuttosto un sistema per esprimere i pensieri, che è qualcosa di completamente diverso. Può essere certamente usato per la comunicazione, come si può fare per ogni cosa - il modo di camminare o lo stile dell'abbigliamento o dell'acconciatura dei capelli. Ma in realtà in ogni senso utile del termine la comunicazione non è la funzione del linguaggio e potrebbe addirittura essere di nessuna utilità per comprendere le sue funzioni e la sua natura.

Come notano Pinker e Rav Jackendoff [2005], l'idea in favore della quale Chomsky sta argomentando, secondo cui il linguaggio non è fatto essenzialmente per la comunicazione, dipende in gran parte dalla considerazione che esso è molto spessso usato senza interlocutori, nella forma del discorso interiore.

Ma nel rifiuto che Chosmky ostenta nei riguardi della funzione comunicativa del lingaggio forse c'è soprattutto il rigetto dell'evoluzionismo nello studio del fenomeno linguistico. Chomsky, che ha sempre rifiutato un ruolo decisivo per la teoria della selezione naturale nello studio del linguaggio, si rende ben conto che i teorici della funzione comunicativa considerano quest'ultima come il principale vantaggio evolutivo che il linguaggio avrebbe recato alla cognizione umana. Ne segue quindi che concedere agli avversari il rilievo della funzione comunicativa equivale ad aprire le porte a Charles Darwin nello studio linguistico. Al contrario di Chomsky, e proprio per i motivi che egli rifiuta, Pinker è un entusiasta paladino della funzione comunicativa del linguaggio, tanto da considerare strana l'inclinazione ad enfatizzare la funzione contraria: «nel mondo intellettuale, al linguaggio è accaduta una cosa curiosa. Invece di essere apprezzato per la sua capacità di trasmettere il pensiero, è stato condannato per la sua capacità di vincolarlo» [Pinker 2002, 257].

6. COME VEDONO LA MENTE I COGNITIVISTI

L'immagine prevalente della mente coltivata nelle scienze cognitive è molto diversa da quella del senso comune. Secondo l'intuizione generale, infatti, la mente è qualcosa di immateriale che anima i corpi e che può persino sopravvivere oltre la consunzione del corpo. Questa immagine tradizionale della mente trova riscontro anche in filosofia, nella forma del dualismo delle sostanze. Ouesto genere di dualisti considerano la mente come una entità non fisica separata dal corpo. I teorici del dualismo delle proprietà, al contrario, sostengono la tesi più moderata secondo cui alcune proprietà di certi oggetti fisici, per esempio il cervello, costituiscono una classe di proprietà distinte dalle caratteristiche fisiche del cervello. Il dualismo ha avuto nella modernità un sostenitore celebre in Cartesio. Egli considerava la mente e il corpo come due sostanze distinte e comunicanti tra loro tramite la ghiandola pineale che si trova nel cervello. Benché il dualismo sia oggi una posizione minoritaria, soprattutto nella sua forma più esplicita, esso annovera anche ai giorni nostri alcuni influenti sostenitori, tra cui Karl Popper e John Eccles [1977].

Ma la tendenza prevalente nella scienza cognitiva e nella filosofia della mente contemporanea va nella direzione opposta. La maggior parte degli studiosi considera la mente come qualcosa di irriducibilmente legata al corpo, anche se secondo modalità nuove rispetto al vecchio materialismo. La teoria oggi dominante è nota come teoria rappresentazionale-computazionale della mente (d'ora in poi TRCM). In uno dei libri che negli ultimi dieci anni ha cantanto più entusiasticamente le lodi della TRCM. Come funziona la mente di Steven Pinker. [1997, 29], troviamo la seguente definizione:

Essa afferma che credenze e desideri sono informazioni, incarnate come configurazioni di simboli. I simboli sono gli stati fisici di pezzetti di materia, quali i chips di un computer o i neuroni del cervello. Essi simboleggiano cose esistenti nel mondo perché sono attivati da quelle cose tramite i nostri organi di senso e per via di ciò che fanno una volta attivati.

Secondo la TRCM, avere una mente vuol dire che certi pezzi di materia, per esempio del nostro cervello, sono configurati in modo tale da essere connessi causalmente – grazie alla loro struttura fisica – con certi pezzi del mondo e con il nostro stesso comportamento in modo da produrre comportamenti che appaiono intelligenti ed appropriati. Le proprietà mentali e le proprietà materiali. per esempio quelle del cervello, riflettono la stessa realtà a due diversi livelli di descrizione. La mente non è una cosa diversa dal corpo, in modo che poi ci si debba sforzare di capire che genere di relazione c'è tra i due termini. La mente è semplicemente quello che il corpo fa.

Ciò che c'è di realmente affascinante in tutto questo è che sembra scomparire il mistero del rapporto tra la mente e il corpo. Come può una sostanza materiale riuscire a pensare? Cosa può esserci in un pezzo di materia in grado di farne qualcosa che pensa? Sono domande che hanno confuso generazioni di filosofi e scienziati. Eppure, secondo la TRCM, esse hanno una risposta chiara. È l'organizzazione funzionale della materia e il ruolo causale che certi pezzi di materia hanno nei riguardi di altri pezzi che risolve il mistero. Parlare della mente non è altro che parlare del modo in cui il cervello funziona. Del resto, quello che fa il cervello potrebbe farlo anche un'altra porzione di materia, per esempio quella che costituisce un calcolatore, dato che quello che conta realmente non è il sostrato materiale del pensiero, ma se la materia è organizzata nel modo giusto per produrlo. Tutto questo è magnifico, perché ci libera del peggiore dei crampi del pensiero moderno dell'occidente, ossia il dualismo tra lo spirito e la materia. Dobbiamo essere grati alla teoria computazionale perché ci ha liberato dalla magia degli spiriti che a lungo si sono agitati dentro di noi.

Seguendo in parte Fodor [1998, 6 ss.] possiamo articolare la TRCM in quattro tesi. La prima tesi stabilisce che la spiegazione psicologica è tipicamente nomica ed è intenzionale da cima a fondo. Tipicamente le leggi invocate dalle spiegazioni psicologiche esprimono relazioni causali tra stati mentali che sono specificati da una descrizione intenzionale, cioè tra stati mentali che sono individuati dal riferimento al loro contenuto, e certi aspetti del mondo o altri stati intenzionali.

Esempi paradigmatici di stati intenzionali sono le credenze e i desideri. È importante notare che, essendo la spiegazione psicologica in questa prospettiva retta da leggi, si suppone che esistano leggi psicologiche. Ovviamente si tratta di leggi che hanno una natura differente da quelle che regolano le scienze dure. Mentre per esempio queste ultime non ammettono eccezioni, le leggi psicologiche non valgono in ogni circostanza, ma solo in condizioni normali. Le leggi che conoscono eccezioni e che hanno valore solo a parità di condizioni sono dette leggi ceteris paribus. La psicologia non è il solo ambito in cui valgano leggi ceteris paribus. La geologia ne è un altro esempio. Una legge della geologia potrebbe affermare che un certo strato di roccia, diciamo lo strato A, si trova sempre sotto lo strato B. Anche una legge di questo tipo avrebbe però vigore solo a parità di altre condizioni; per esempio, potrebbe non aver valore dopo un forte terremoto.

La seconda tesi stabilisce che le rappresentazioni mentali sono i portatori primitivi del contenuto intenzionale. Le rappresentazioni mentali esprimono una relazione verso un contenuto. Secondo la TRCM non c'è nessuna mente senza contenuti e nessun contenuto senza rappresentazioni. La mente quindi è costituita da rappresentazioni che veicolano il contenuto. Secondo la terza tesi pensare vuol dire calcolare, «Calcolare», tuttavia, non ha necessariamente a che fare con l'aritmetica. La nozione di calcolo che è qui in gioco è più ampia di quella con cui ci si familiarizza nella scuola elementare e coincide con l'elaborazione delle informazioni (cfr. cap. V, § 1). Se un sistema sta elaborando delle informazioni, allora esso nella terminologia che stiamo impiegando sta calcolando. Le informazioni in questione di norma sono rappresentazioni. Quindi nel complesso possiamo dire che l'immagine che la TRCM ha del pensiero consiste in elaborazioni operate su rappresentazioni. Se un sistema «pensa», vuol dire che esso sta compiendo delle operazioni su rappresentazioni intenzionali.

Secondo una delle metafore più influenti nelle scienze cognitive dovremmo pensare al rapporto tra la mente e il corpo-cervello come al rapporto che c'è tra l'hardware e il software di un computer. L'hardware è la materia di cui è fatto un calcolatore: silicio, plastica e così via. Il software è il programma che si serve di quella materia per svolgere i compiti per cui è stato progettato: fornire una interfaccia all'utente, disegnare, scrivere e così via. Se c'è intelligenza in un computer sta nel programma, non nell'hardware. La magia del computer sta nell'insieme di istruzioni che gli permettono di impiegare la materia di cui è fatto in vista di compiti che ai nostri occhi appaiono intelligenti. La metafora del computer suggerisce quindi che se la mente è simile a un programma per calcolatori e il cervello è simile alla «ferraglia» che si trova dentro le scatole dei computer, allora ciò che è realmente interessante e intelligente nei processi cognitivi non si trova nella biologia del cervello, ma nel modo in cui la mente lo fa «girare» nel modo opportuno.

Tutto ciò conduce alla tesi del funzionalismo, ossia l'idea che nel definire cosa sono i processi cognitivi non conta su quale sostrato materiale essi abbiano luogo. Secondo la tesi funzionalista, originariamente proposta da Hilary Putnam nel 1960, tutto quello che conta in un processo cognitivo è il modo in cui la materia è organizzata. Definire l'architettura funzionale di un processo cognitivo vuol dire afferrarne il suo segreto che è di natura astratta e formale. Considerare la mente come un processo di elaborazione delle informazioni indipendente dal tipo di sostrato materiale su cui ha luogo ha spinto a immaginare che i processi cognitivi possano anche essere realizzati su un sostrato differente da quello del sistema nervoso centrale degli esseri umani. L'impresa dell'intelligenza artificiale. quindi, non avrebbe luogo senza una qualche forma di funzionalismo e la sua tipica «tesi del carattere astratto delle computazioni» [Marconi 2001, 11].

Nel resoconto che Fodor fornisce della TRCM la quarta tesi stabilisce che il significato è (più o meno) informazione. Fino a questo punto l'argomentazione che abbiamo sviluppato conduce a ritenere che i processi cognitivi siano operazioni sintattiche definite su rappresentazioni mentali. Sono le rappresentazioni a portare il peso del contenuto intenzionale. Il legame con il mondo sembra ricadere così su una teoria causale delle rappresentazioni mentali. Ma qui iniziano i problemi seri. Davvero è sufficiente una teoria causale del rapporto che intercorre tra gli stati intenzionali e i «corrispondenti» pezzi di mondo per rendere conto del contenuto delle rappresentazioni? Come trattiamo il problema delle rappresentazioni coreferenziali, ossia di quelle rappresentazioni che hanno lo stesso riferimento?

Se il significato fosse soltanto informazione, allora le rappresentazioni coreferenziali dovrebbero essere considerate come sinonime [Fodor 1998, 12]. Ma. come sappiamo almeno fin dai tempi di Gottlob Frege [1892], il riferimento ad uno stesso stato di cose nel mondo può dare luogo a diversi modi di presentazione o a diversi sensi. Possiamo riferirci ad una stessa persona sia considerandolo come il Presidente della Repubblica sia come il Capo delle Forze armate, e sappiamo dalla semantica degli atteggiamenti proposizionali che le due espressioni non svolgono affatto la stessa funzione in molti tipi di frasi [Perconti 2003]. In definitiva il fatto di essere informazione è un aspetto centrale del significato e del contenuto delle rappresentazioni, ma è lontano dall'essere tutto ciò che conta. Oltre al problema delle rappresentazioni coreferenziali si pensi al fatto che di norma gli stati mentali hanno anche un tono emotivo e come questo non sia affatto un aspetto marginale dell'articolazione della vita mentale. Inoltre, le emozioni esercitano un ruolo essenziale nel determinare il comportamento degli individui. Purtroppo la considerazione meramente informazionale degli stati intenzionali non è in grado di rendere conto dell'aspetto emotivo della mente.

I problemi che affliggono la versione più diffusa della TRCM mostrano alcuni motivi per cui, nonostante la psicologia computazionale sia la teoria più influente nelle scienze cognitive di oggi, essa non è affatto immune da controversie. C'è un certo accordo sulla sua idea di fondo, ossia sul considerare la mente come un insieme di computazioni su rappresentazioni, ma sono controversi sia i dettagli della teoria sia certi problemi cruciali che la affliggono. Lo stesso Fodor ha messo in luce alcuni importanti limiti della TRCM. In un saggio intitolato La mente non funziona così [2000], scritto come replica all'entusiasmo che Pinker aveva mostrato nel suo Come funziona la mente [1997] verso la possibilità che l'unione della TRCM con la psicologia evoluzionistica sia una buona base per spiegare tutti

i fenomeni mentali, egli tenta di mostrare come alla teoria dominante sfuggano invece aspetti centrali del funzionamento della mente.

Il problema principale individuato da Fodor consiste nel fatto che la maggior parte dei processi cognitivi in cui gli individui sono impegnati quotidianamente sono inferenze di tipo abduttivo. L'abduzione è un procedimento inferenziale in cui si cerca di ricavare un principio generale che lega tra di loro diversi fatti osservati. Quello che importa in questo contesto è che quando ragioniamo così non c'è modo di delimitare a priori le considerazioni che possono essere pertinenti per fare l'inferenza. Virtualmente l'intero sfondo delle credenze di un individuo può intervenire nel processo inferenziale in questione. È facile notare come questo tipo di ragionamenti non siano affatto periferici nella pratica comune. Tutto ciò solleva però un problema generale molto spinoso: di norma il modo in cui si formano le nostre credenze è sensibile al contesto, ma non c'è alcun modo di stabilire con precisione quanto ampio sia il contesto pertinente. Il problema che le precedenti considerazioni sollevano a proposito della TRCM è piuttosto grave. Il punto è che l'idea che i processi cognitivi siano computazioni su rappresentazioni e le proprietà sintattiche delle rappresentazioni siano in grado di determinare il ruolo causale che esse hanno sul comportamento comporta una conclusione piuttosto impegnativa, ossia che «i processi mentali sono, ipso facto, insensibili alle proprietà contestuali delle rappresentazioni mentali» [Fodor 2000, 33]. Questo però contrasta con la natura globale dei processi inferenziali abduttivi e con la loro diffusione dei ragionamenti comuni.

Iniziamo così a vederecome alcuni aspetti centrali dell'immagine più diffusa nelle scienze cognitive contemporanee appaiano molto problematici. Per esempio, la natura modulare, o addirittura massivamente modulare, della cognizione su cui molti studiosi insistono è messa a dura prova dalle considerazioni precendenti. Abbiamo infatti molte evidenze a sostegno della specificità di dominio di numerosi processi cognitivi e abbiamo anche notato quanto la modularità riguardi l'ipotesi della core knowledge, ma siamo nello stesso tempo condotti a fare delle osservazioni che evidenziano la natura globale della cognizione.

Nel considerare il contributo che le scienze cognitive del linguaggio possono offrire ad una teoria generale della mente occorre sottolineare quanto sia pervasivo nell'organizzazione delle lingue il fenomeno della dipendenza dal contesto (cfr. supra, § 4.1.1). L'intera dimensione pragmatica del linguaggio è pesantemente investita da tale fenomeno. Eppure gli studi sul fenomeno linguistico della dipendenza contestuale faticano ad essere integrati nella tendenza dominante delle scienze cognitive. Il motivo, probabilmente, risiede proprio nel fatto appena menzionato che queste ultime sono troppo condizionate dal modello computazionale classico che rifiuta in modo netto il fenomeno della dipendenza dal contesto.

7. I LIMITI DELLE SCIENZE COGNITIVE (DEL LINGUAGGIO)

La psicologia computazionale è come Giano bifronte. In quanto basata sull'idea che i processi cognitivi consistano in computazioni su rappresentazioni, è una creatura magnifica e attraente, che promette di liberarci da alcuni perniciosi rompicapo del passato relativi alla doppia natura umana di esseri dotati di un corpo materiale e di una mente immateriale. Tuttavia, proprio a causa della sua natura computazionale, essa appare anche come un recinto troppo stretto per contenere integralmente le più radicate intuizioni sulla mente. Come abbiamo notato nel paragrafo precedente, la psicologia computazionale è in difficoltà nello spiegare la presenza pervasiva nel linguaggio e nel ragionamento di procedimenti inferenziali di tipo abduttivo e il costante ricorso a informazioni che non hanno natura locale e specifica per dominio, ma globale e dipendente dal contesto. I limiti della TRCM, tuttavia, non riguardano soltanto il fenomeno della dipendenza dal contesto. Altri aspetti della vita mentale, particolarmente radicati nell'uso del linguaggio, sembrano particolarmente refrattari all'analisi computazionale. Nelle prossime pagine esamineremo due gravi difficoltà della psicologia computazionale che non sono state ancora superate. Ci concentreremo sul fenomeno della coscienza e sull'aspetto normativo dei concetti e del significato.

7.1. La coscienza

Quando nella psicologia imperava il comportamentismo era necessario sottolineare, persino di fronte ai professionisti della ricerca scientifica, quanto fosse significativo il fenomeno della coscienza. I teorici di orientamento comportamentista, infatti, si rifiutavano di considerare come fenomeni genuini gli stati interni degli individui e nutrivano una diffidenza ancora maggiore nei confronti di quegli stati mentali, come la coscienza, che sono dotati di un lato irrimediabilmente soggettivo. Ma, a dispetto degli psicologi professionisti, l'intuizione comune non aveva mai abbandonato l'idea che il fatto di essere consapevoli è una caratteristica centrale della mente umana. Agli occhi di ciascuno di noi una spiegazione della mente che non faccia i conti con il problema della coscienza è semplicemente mutilata di una parte vitale.

Da una ventina d'anni a questa parte la nuova scienza della mente ha iniziato ad affrontare sistematicamente il tema della coscienza, intraprendendo il tentativo di inserirla nell'ordine dei fenomeni naturali. Le scienze cognitive del linguaggio sono costrette a confrontarsi con tale impresa e anzi potrebbero contribuire molto alla sua riuscita. Il linguaggio, infatti, è un elemento centrale nella sensazione della consapevolezza. È la lingua che di norma conferisce alla nostra consapevolezza la forma che essa ha, che ne alimenta il corso nell'introspezione e che è in grado di consentire che la sua ispezione sia efficace.

Il fenomeno della coscienza ha davvero un lato oscuro e difficile, soprattutto se si cerca di comprenderne i legami con un fenomeno altrettanto complesso come quello linguistico. Susan Blackmore [2003, 1] ha affermato addirittura: «Se pensi di avere una soluzione al problema della coscienza, non hai compreso il problema». Forse l'affermazione è esagerata, ma bisogna riconoscere che, almeno a prima vista, la coscienza e il suo rapporto con il linguaggio verbale possono trasmettere una sensazione sconcertante. Ecco perché per comprendere un fenomeno così articolato può essere utile partire da alcune semplici distinzioni. La prima che prenderemo in considerazione è particolarmente importante perché è in grado di mostrare dove iniziano a sorgere i problemi della coscienza con le scienze cognitive del linguaggio.

Diversi studiosi, tra i quali in particolare David Chalmers, hanno sostenuto che nell'ambito dei fenomeni mentali è importante distinguere due aspetti completamente differenti [1996, 11]:

Il primo è il concetto fenomenico di mente. Si tratta della nozione di mente in quanto esperienza cosciente, e della nozione di stato mentale esperito in modo conscio. [...] Il secondo aspetto consiste nel concetto psicologico di mente. Si tratta della nozione di mente come base causale o esplicativa del comportamento. Uno stato è mentale in questo senso se svolge il tipo giusto di ruolo causale nella produzione del comportamento, o perlomeno svolge un ruolo appropriato nella spiegazione del comportamento. In base alla nozione psicologica ha scarsa importanza che uno stato mentale abbia una qualità cosciente o meno. Ciò che conta è il ruolo che esso ricopre in una economia cognitiva.

Il contrasto tra la mente fenomenica e quella psicologica è basato essenzialmente sulla differenza tra il ruolo funzionale di uno stato mentale e l'eventuale effetto. che fa ad averlo. Quest'ultima caratteristica, enfatizzata da Thomas Nagel [1974] in un celebre saggio intitolato Cosa si prova a essere un pipistrello?, fa riferimento alla qualità soggettiva dell'esperienza consapevole. Si rifletta sul fatto che di fronte alla stessa scena due persone, anche se invitate a contemplare uno stesso oggetto, avranno una sensazione diversa. Del resto persino in una stessa persona una medesima rappresentazione visiva produrrà sensazioni diverse in due momenti successivi. Guardare un oggetto, infatti, non è solo questione di rappresentarselo, ma di provare qualcosa nell'avere quella rappresentazione. Ci si riferisce a tali aspetti della vita mentale come a dei qualia, una parola latina che vuol dire «qualità». Sulla base di considerazioni come quelle che stiamo qui svolgendo. Ned Block [1995] ha distinto tra una coscienza d'accesso (coscienza-A), che consiste nella possibilità di dirigere l'attenzione sui propri stati mentali, e una coscienza fenomenica (coscienza-F), che consiste nell'effetto che fa ad avere quello stesso stato mentale. Si prenda il caso del dolore. Dal punto di vista introspettivo le componenti d'accesso e quelle fenomeniche del dolore risultano indistinte dal momento che di norma le proprietà pertinenti di entrambe occorrono simultaneamente [Chalmers 1996, 17]. Tale simultaneità non dovrebbe però impedire di tenerle distinte nell'analisi concettuale. Da questo punto di vista non è difficile rintracciare nel ruolo funzionale del dolore il ruolo adattativo di tenere lontano il soggetto dalle stimolazioni potenzialmente nocive e nel lato fenomenico l'insieme delle sensazioni sgradevoli che esso di norma comporta.

L'idea che i processi mentali consistano in computazioni su rappresentazioni è del tutto compatibile con il lato psicologico e funzionale della mente, ma è improbabile che sia in grado di rendere conto anche della sua natura fenomenica. Il dubbio può assumere una portata maggiore se ci domandiamo se in generale un approccio rappresentazionale ai processi cognitivi sia capace di spiegare il fatto che avere uno stato mentale ha anche una qualità soggettiva e individuale. Alcuni studiosi, tra cui Micheal Tve [1995; 2000], hanno pubblicizzato la loro fiducia. Ma permangono molte ragioni per essere dubbiosi. Se si individua uno stato mentale in termini di ruolo funzionale, infatti, ci si basa essenzialmente su ciò che esso fa in un sistema. Ma «svolgere una funzione in un sistema» è, per definizione, una proprietà-come sostengono i teorici del funzionalismo-insensibile alla materia in cui la funzione viene realizzata e che astrae dal particolare individuo che la istanzia. A dispetto di ciò è probabilmente proprio il corpo del portatore di uno stato percettivo a conferirgli la particolare sensazione che si prova ad esperirlo. La radice ultima del fenomeno dei qualia risiede nel fatto che avere uno stato mentale è una esperienza individuale, laddove la TRCM è una teoria costruita proprio astraendo dalle caratteristiche individuali del portatore della rappresentazione.

Benché ci siano ragioni per dubitare che la consapevolezza di se stessi sia riducibile al linguaggio verbale [Perconti 2005], è tuttavia chiaro che il linguaggio contribuisce in modo determinante a generare la sensazione introspettiva della coscienza di sé e a conferirle quell'aspetto qualitativo così difficile da trattare. Sembra quindi che le scienze cognitive del linguaggio siano chiamate a rendere conto di come l'uso della lingua conferisce la sensazione qualitativa dell'esperienza soggettiva e che, d'altra parte, siano in difficoltà nello svolgere il loro compito fintanto che assumono il loro modello di spiegazione soltanto dalla psicologia computazionale e dalle neuroscienze.

7.2 La normatività

La TRCM è una teoria naturalizzata della mente, ossia una teoria che considera la mente come una entità spiegabile dalle scienze naturali. Naturalizzare la mente e la semantica sono diventati slogan popolari nelle scienze cognitive, ma allo stesso tempo appaiono anche come rompicapi irrisolvibili. Dove sta il problema? Il punto è che nella vita mentale e nel linguaggio sembra esserci un residuo intrattabile da parte dei programmi di naturalizzazione, e precisamente il loro lato normativo.

Un modo per far emergere l'aspetto normativo insito nel significato e nei concetti consiste nel riflettere sulle procedure di attribuzione linguistica e psicologica. Dennett ha insistito sul fatto che l'atteggiamento intenzionale, che è il modo in cui egli chiama l'attribuzione di stati psicologici agli altri individui per prevedere il loro comportamento, è anche un atteggiamento normativo. Per afferrare questo punto si apprezzi la differenza con gli altri due sistemi di predizione

amporamentale a cui secondo Dennett [1987; 1996] possiamo ricorrere: l'atrezgiamento fisico e l'atteggiamento progettuale. Usiamo l'atteggiamento fisico auando conosciamo la costituzione fisica di un oggetto e siamo in grado di far eva sulle capacità predittive delle scienze dure, come la fisica e la chimica. Per esempio, se spingiamo a forza una palla di gomma sott'acqua possiamo prevedere che - una volta lasciata libera - tornerà velocemente a galla. Naturalmente possibile fare questa osservazione anche indipendentemente dalla conoscenza delle leggi fisiche, ma in fondo è sempre su quelle leggi che ci si basa quando si tanno previsioni sul comportamento di un evento come una palla immersa zell'acqua. Per fare la nostra previsione non è necessario supporre che il pallone abbia il desiderio tornare a galla al più presto. Basta fare affidamento sulla di peso specifico tra l'aria contenuta nella palla e l'acqua che le sta intorno. Ovviamente i dettagli di questo tipo di spiegazione potrebbero diventare molto complicati se volessimo spiegare in questo modo eventi come la corsa di un bambino in un parco o il funzionamento di un telefonino.

Quando siamo di fronte a un telefonino, infatti, è meglio adottare quello che Dennett chiama atteggiamento progettuale. Non è importante conoscere la costituzione fisica dei telefonini per sapere come usarli; anzi, poche persone saprebbero descrivere nel dettaglio il funzionamento di un telefonino sulla base delle sue caratteristiche fisiche. È sufficiente sapere che è stato progettato perché risponda in modo regolare a certe sollecitazioni. Questo atteggiamento è molto comodo per i sistemi artificiali come le automobili, i computer o le macchine calcolatrici. È molto semplice fare previsioni su sistemi di questo tipo grazie all'atteggiamento progettuale e normalmente le previsioni si rivelano abbastanza affidabili.

Se usiamo l'atteggiamento progettuale per avere commercio con i sistemi di cui vogliamo prevedere il comportamento non è necessario attribuire loro stati intenzionali. Da questo punto di vista tale atteggiamento è simile all'atteggiamento fisico. Le cose vanno però in modo completamente diverso quando abbiamo a che fare con le persone. Il metodo di gran lunga più comodo per prevedere il comportamento delle persone è attribuire loro stati intenzionali, trattarli cioè come agenti razionali. Una obiezione che è stata mossa nei riguardi della teoria dell'atteggiamento intenzionale riguarda il criterio per stabilire quali oggetti considerare sistemi intenzionali. Cosa ci spinge a considerare le persone come agenti razionali e a negare questo trattamento ad altre entità, come i telefonini? E, inoltre, come și fa a stabilire quali stați intenzionali attribuire a un certo sistema? La risposta di Dennett è che l'atteggiamento intenzionale è un atteggiamento normativo. Ouando siamo di fronte a un sistema che vogliamo trattare in modo intenzionale, assumiamo che tale sistema sia dotato di razionalità e poi gli attribuiamo gli stati intenzionali che dovrebbe avere nelle circostanze in questione. Anche secondo Davidson l'attribuzione psicologica è regolata da un atteggiamento normativo, così come il processo di attribuzione di una intenzione significativa all'interlocutore. Per comprendere le altre persone dobbiamo supporre che in genere non agiscano in modo inconsulto e che tentino di dirci cose ragionevoli. Davidson, come abbiamo già notato, chiama «principio di carità» la regola a cui ci si ispira quando cerchiamo di interpretare le parole altrui partendo dalla supposizione che il parlante le abbia dotate di un loro significato. L'idea di base è che se non supponiamo che il nostro intercolutore è un essere razionale, non possiamo ascrivergli alcuna credenza. Per esprimere queste idee in modo lapidario potremmo dire che il principio di carità è ineliminabile dalla comunicazione e che esso comporta sempre un atteggiamento normativo. Da ciò se ne deduce che ad essere ineliminabile è anche la normatività. Detto in altro modo ancora, il contenuto avrebbe un carattere normativo a causa del fatto che l'uso del principio di razionalità è costitutivo dell'intenzionalità.

Ci sono però altri motivi che spingono verso la normatività [Wikforss 2001]. Per esempio, il legame tra significato e verità spinge a considerare la normatività semantica; infatti se un certo predicato si applica correttamente a una certa classe di eventi, questo vuol dire che esiste una norma linguistica di applicazione. Oltre questo tipo di correttezza relativo al riferimento delle parole e degli enunciati, c'è poi la comune correttezza linguistica a cui tutti quanti veniamo addestrati a scuola e a casa nei primi anni di vita. Quando si ammonisce qualcuno dicendogli che «si dice così», si sta fissando una norma sociale di uso linguistico a cui il parlante deve conformarsi se vuole essere giudicato competente dalla maggioranza delle persone che appartengono alla sua comunità linguistica o da coloro verso cui in una certa materia si nutre un atteggiamento deferenziale.

Questo tipo di ragionamenti possono prendere la forma generale di una obiezione nei confronti di ogni epistemologia naturalizzata. Se si ritiene che l'epistemologia sia essenzialmente normativa e che la scienza sia invece descrittiva, allora si finisce per pensare che l'epistemologia non è disponibile a diventare una disciplina scientifica, in quanto non può essere naturalizzata [per una posizione diversa, cfr. Janvid 2004]. Su un piano parzialmente diverso il tema della normatività della conoscenza deriva dall'idea che generalmente le credenze aspirano ad essere, oltre che vere, anche giustificate. Ma giustificare una credenza vuol dire impegnarsi nella pratica di dare e fornire ragioni che è di natura valutativa e quindi, ancora una volta, normativa [Brandom 2001]. Qui sembra esserci una differenza profonda con le scienze sperimentali [Vassallo 2003, 75]:

In teoria della conoscenza vogliamo rispondere alla domanda «come dovremmo conseguire le nostre conoscenze, affinché esse siano giustificate, o siano conoscenze»?, mentre nelle scienze vogliamo rispondere alla domanda «come conseguiamo le nostre credenze»?. Le due domande sono manifestamente differenti: la prima esige una risposta normativa, la seconda descrittiva.

Dobbiamo a questo punto chiederci se le scienze cognitive del linguaggio sono preparate ad affrontare il genere di problemi che l'illustrazione degli aspetti normativi della semantica e dell'attribuzione psicologica sollevano. Il fatto che nell'intrattenere e nell'attribuire concetti e significati ci sia un lato normativo può essere la base per una serie di considerazioni teoriche sulla natura della mente e del linguaggio. Ma, indipendentemente dagli esiti che tali considerazioni potrebbero sortire, la normatività sembra costituire un residuo ineliminabile nel genere di fenomeni che le scienze cognitive studiano. Sono in grado queste ultime di affrontare il problema? E. relativamente all'analisi che stiamo conducendo in questa sede, sono in grado le scienze cognitive del linguaggio di naturalizzare il lato normativo del significato?

È importante notare che per le scienze cognitive del linguaggio il problema è particolarmente spinoso. Infatti, mentre altri settori delle scienze cognitive possono tentare di eludere il problema della normatività, nel caso dello studio del linguaggio ciò non sembra possibile. È forse possibile avanzare significativamente nella comprensione del fenomeno della visione senza disporre di una teoria sofisticata sul rapporto tra normatività e sistemi di senso. Ma non si va molto lontano nella comprensione del linguaggio se non si dispone di una teoria sul rapporto tra significato e normatività.

Di fronte a questo genere di problemi è possibile tenere tre atteggiamenti differenti. Il primo consiste nel negare il problema. Si può sostenere che nel linguaggio non c'è nulla di normativo e che ogni suo aspetto è disponibile ad una analisi meramente descrittiva. Sortisce lo stesso effetto la tesi di chi sostenga che nella pratica linguistica è presente in effetti un aspetto normativo, ma che tale aspetto non riguarda l'oggetto del linguaggio, a cui sono interessate le scienze del linguaggio, ma solo il suo esercizio nella società. In questo caso le scienze cognitive del linguaggio potrebbero occuparsi del linguaggio in modo simile a come i progettisti di armi si occupano della costruzione e della comprensione delle pistole che essi producono, disinteressandosi cioè del problema dell'uso delle armi nella pratica sociale. Il principale problema a cui va incontro tale posizione è che il lato sociale nella pratica linguistica sembra per molti versi interno al fenomeno che si sta esaminando. Perciò trascurare l'uso del linguaggio a vantaggio di una sua indagine meramente ingegneristica sembra una impresa impossibile.

Il secondo atteggiamento che è possibile tenere nei riguardi degli aspetti normativi del fenomeno linguistico consiste nel sostenere che le scienze cognitive del linguaggio sono costitutivamente incapaci di affrontare il problema. Considerate le premesse su cui le scienze cognitive del linguaggio sono fondate, ossia il naturalismo e la psicologia computazionale, ne dovremmo ricavare la conclusione che nonostante esse siano in grado di fornirci una lunga serie di informazioni su cosa è il linguaggio verbale, su come esso viene prodotto e compreso, non possono tuttavia dire nulla di significativo sul suo aspetto normativo. Da questo punto di vista, chiedere alle scienze cognitive del linguaggio di mostrare perché i significati e i concetti hanno un aspetto normativo sarebbe come chiedere alla geologia di offrirci informazioni su come si gioca a calcio, partendo dalla considerazione che il gioco del calcio avviene su un terreno che è analizzabile dai geologi. Ma, si può obiettare, tutto ciò che la geologia è in grado di dirci sul terreno di gioco è ininfluente per comprendere fenomeni normativi come la «vittoria», un «fallo» o una «scorrettezza».

È possibile infine tenere un atteggiamento meno radicale dei due precedenti. In particolare si può ritenere che il problema della normatività sia un problema genuino e in grado di evidenziare dei limiti autentici dell'analisi che le scienze cognitive possono elaborare sul linguaggio, se adottano il modello secondo cui i processi cognitivi consistono in computazioni su rappresentazioni.

Ciò nondimeno si possono nutrire alcune speranze che rivedendo, magari profondamente, la TRCM sia possibile affrontare il fenomeno della normatività. I principali motivi di speranza a questo riguardo provengono dallo studio comportamentale e neuroscientifico della cognizione sociale. Da alcuni anni a questa parte, come abbiamo accennato, iniziamo a sapere qualcosa delle basi neurofisiologiche di fenomeni come l'imitazione, l'empatia e la comprensione delle azioni altrui. Se tali studi saranno in grado di offrire le informazioni che oggi promettono, allora disporremo di una base «naturalizzata» per la comprensione degli aspetti sociali della cognizione. Se si tratterà di una base sufficiente per rendere conto del fenomeno della normatività è ancora troppo presto per dirlo. ma lo studioso interessato alla naturalizzazione della normatività e degli aspetti sociali del significato e del pensiero può nutrire qualche fondata speranza nelle ricerche future.

Biologia, linguaggio, evoluzione

In questo capitolo vengono descritte le basi anatomiche in dispensabili per la produzione linguistica e i processi evolutivi che ne avrebbero consentito l'attecchimento a livello di popolazione. In particolare vengono portate evidenze genetiche, etologiche, paleontologiche e paleoneurologiche della necessità di analizzare separatamente l'evoluzione delle strutture anatomiche del linguaggio e l'evoluzione della funzione linguistica, affermatasi in seguito e non connessa causalmente con la selezione dei tratti anatomici. Le leggi biologiche della selezione naturale, infatti, impongono vantaggi immediati per la stabilizzazione dei tratti genetici mutati che garantiscono un migliore adattamento degli individui portatori e un conseguente aumento della fitness della specie. La funzione linguistica si caratterizzerebbe non in quanto vantaggio immediato per la sopravivenza della specie sapiens sapiens, ma in quanto generatrice di mondi linguistico-esperienziali.

1. BIOLOGIA DEL LINGUAGGIO

L'indagine sui fondamenti biologici del linguaggio e, più in generale, sulle basi biogenetiche delle f\(^{1}\)nzioni superiori dell'uomo occupa un ampio spazio nell'attuale dibatto all'interno dellescienze cognitive del linguaggio. Tale tendenza si è sviluppata sulla scorta delle numero senuove conoscenze in campi d'indagine come la genetica, le neuroscienze, gli studi di neuroelettrofisiologia, ma anche in settori di studio comparativo del comportamento come l'etologia o, ancora, in ambito paleoantropologico. Negli ultimi quarant'anni i risultati raggiunti in queste scienze hanno, infatti, reso possibile la confutazione di teorie sull'origine e sulla specificità umana di funzioni superiori e sui rispettivi sostrati organici,

mettendo in crisi e in parte rivoluzionando la metodologia d'indagine precedentemente impiegata.

L'esigenza di considerare tali dati come elementi determinanti nella spiegazione del funzionamento del linguaggio deriva dalla constatazione della necessità biologica di strutture morfologiche, centrali e periferiche, e di una serie di capacità, a esse correlate, altamente specifiche per la produzione e la comprensione del linguaggio. L'impiego dei dati biologici all'interno di un paradigma d'indagine che assume come centrale la complessità linguistica, non deve, tuttavia venire inteso come una sorta di marchio o garanzia di obiettività, cui si ricorre per avvalorare ipotesi speculative. Il mito della certezza del dato empirico è, infatti, del tutto estraneo alle scienze della natura, più che mai consapevoli dell'intrinseca problematicità dello studio delle strutture materiali su cui si istanziano (o che producono) funzioni complesse.

La valutazione della componente biologica va, inoltre, collocata in un quadro interpretativo che considera la capacità linguistica (nelle sue componenti sintattico-strutturali e nelle manifestazioni socioculturali che essa consente e determina) come projezione di una struttura morfologica complessa non solo per la sua configurazione attuale, ma anche per i cambiamenti che ha accumulato nel corso della sua storia evolutiva.

Il presupposto di questa prospettiva è che la costituzione fisica degli organi implicati nell'uso del linguaggio deve risultare «adatta» alla produzione e alla percezione di suoni articolati complessi. I dati derivanti dalla ricostruzione delle capacità degli ominidi attraverso i reperti archeologici e paleoantropologici, quelli relativi al confronto con le capacità fonatorie e le strutture vocali presenti negli altri animali e, infine, quelli riguardanti l'indagine sulla fisiologia e la patologia della produzione linguistica, convergono, infatti, su quella che potremmo definire la condizione necessaria (ma non sufficiente) per il linguaggio articolato umano: l'adattamento specifico degli organi fonatori e delle strutture cerebrali del linguaggio alle istanze della sopravvivenza.

Il quadro delle necessità biologiche del linguaggio, riguarderebbe, così, non solo la componente materiale, organica, che consente l'articolazione fine, ma anche i processi di adattamento evolutivo e di rifunzionalizzazione delle strutture che precedentemente svolgevano altri compiti. La valutazione del percorso che ha condotto all'uomo anatomicamente moderno consente, inoltre, di guardare al linguaggio come a un elemento naturale, oggetto di selezione evolutiva. Ovviamente la componente morfologica e la sua derivazione evolutiva costituiscono solo il livello della necessità organica per il linguaggio. Necessità che non può. tuttavia, prescindere dalle capacità sintattico-ricorsive e dalle abilità sociali e relazionali rese possibili dallo sviluppo della facoltà linguistica.

Per questi motivi la nostra analisi procederà inizialmente alla descrizione sintetica dell'anatomia del parlante, delle possibili basi genetiche della capacità articolatoria e delle sue specificità etologiche, passando in seguito alla discussione sugli aspetti evolutivi del linguaggio, per poi concludere con la funzione adattativa della semantica. In tale prospettiva quest'ultima viene considerata il vero elemento di discriminazione tra animali umani e non umani, perché fondata su differenze cognitive di ordine quantitativo (capacità articolatoria fine del linguaggio e numero di mutazioni genetiche che modificano strutture precedentemente impiegate per altre funzioni) e qualitativo (capacità di creare mondi linguistico-esperienziali diversi e culturalmente caratterizzati, ovvero «semantica esistenziale» nel senso di Minkowski [1927]).

1.1. Specificità morfologiche

La produzione del linguaggio umano richiede l'impiego di strutture anatomiche altamente specializzate. Sebbene il dibattito sulla specie-specificità delle componenti morfologiche centrali e periferiche deputate al linguaggio, ossia sull'esclusività morfologica della specie sapiens sapiens per tali strutture, sia ancora molto acceso, è indiscutibile il fatto che la forma e la flessibilità del tratto vocale sopralaringeo e il controllo volontario dell'attivazione motoria dell'apparato vocale siano determinanti per l'articolazione linguistica. Varie posizioni relative all'origine evolutiva di tale apparato arrivano a conclusioni differenti, a volte dicotomiche, sulla natura dell'attività comunicativa umana [cfr. Fitch 1994: Deacon 2000: Lieberman 20021

Vari studi etologici, su cui torneremo (cfr. in fra. § 1.3), hanno, infatti, dimostrato la presenza di alcuni tratti anatomici simili all'apparato vocale del sapiens sapiens in animali non umani anche lontani nella scala evolutiva rispetto all'uomo [per una rassegna cfr. Fitch 2002a], indicando cometali tratti svolgano un ruolo attivo nella produzione di suoni per scopi comunicativi [Hauser 1997].

In realtà, sebbene non ci sia accordo sulla natura omologica o analogica di tali strutture, gli studi comparativi della produzione di suoni in varie famiglie di animali hanno rilevato l'unicità dell'apparato vocale umano nel produrre e mutare in maniera dinamica la frequenza fondamentale, cioè il ritmo di apertura e chiusura delle corde vocali. Tale variazione dipende direttamente dalla possibilità di cambiare la forma del canale sopralaringeo che, modulando l'afflusso di aria su certe frequenze sonore, funge da filtro acustico.

Owren, Seyfarth e Cheney [1997], ad esempio, comparando la produzione sonora del sapiens sapiens con quella dei babbuini, hanno evidenziato come gli uomini siano in grado di produrre il più ampio range di frequenze formantiche!, cioè

¹ La possibilità di produrre un range molto ampio di frequenze formantiche ha risvolti evolutivi importanti. Fitch [2002a], con uno studio comparativo sulla posizione della laringe negli animali, ha dimostrato che la possibilità di emettere suoni forti negli animali è collegata alla percezione della loro mole fisica: maggiore è la robustezza dell'animale, maggiore sarà l'altezza del suono emesso. Questo lascia ipotizzare che la necessità di articolare maggiori frequenze abbia ris volti nella fitness dell'individuo e della specie cui appartiene, e che un apparato fonatorio come quello umano, in grado di modulare in maniera fine le frequenze sonore e di gestire con un filtro le frequenze formantiche, abbia fornito vantaggi di base, riproduttivi, alla specie umana. Questo da un punto di vista strutturale, stenotopico. D'altro canto, però, il collegamento della produzione acustica a vantaggi riproduttivi spinge a ricollocare la funzione della fonazione a livelli evolutivi più bassi: la necessità di «ingrandire acusticamente» le proprie dimensioni corporee è presente già all'interno della maggior parte dei membri della famiglia dei mammiferi.

quelle frequenze a cui corrisponde il massimo dell'energia fonatoria. Nonostante le differenze di interpretazione, dunque, la specificità dell'apparato vocale umano sembra risiedere nella possibilità di produrre una quantità molto elevata di suoni articolati rispetto agli altri animali non umani e ciò è dovuto alla forma caratteristica del tratto vocale sopralaringeo, come dimostrato da un'ingente mole di studi [Lenneberg 1967; Lieberman e Crelin 1971; Lieberman 1975; Lieberman e McCarthy 1999: Deacon 19971.

I membri adulti della specie sapiens sapiens possiedono una configurazione tipica del canale faringeo con la laringe posizionata al di sotto della cavità orale. L'abbassamento della laringe comporta la condivisione dello stesso percorso, per quanto breve, per il cibo e per l'aria: la trachea e l'esofago, i canali che conducono rispettivamente ai polmoni e allo stomaco, infatti, nell'uomo si dividono più in basso rispetto agli altri primati non umani [Negus 1949]. La posizione bassa della laringe e la sua inclinazione di circa 90 gradi rispetto a quella dei primati risulta essere un elemento determinante per molti aspetti del linguaggio umano. Essa, infatti, determina un cambiamento nella geometria del tratto oro-vocale. la tipica struttura sopralaringea a due canne. Tale configurazione caratteristica produce un rapporto particolarmente vantaggioso di circa 1:1 [cfr. Lieberman e McCarthy 1999] tra la lunghezza della canna orizzontale (che va dalle labbra alla parete posteriore della faringe) e quella della canna verticale (che va dalle fessure vocali sino al palato molle).

Da un punto di vista fonatorio, la conseguenza anatomica immediata è l'aumento della cavità faringale che può, inoltre, venire volontariamente modificata dall'individuo nella zona di incrocio delle due canne, formando così un filtro dinamico che rende possibile la produzione di vocali dotate di frequenze formantiche acusticamente distinte [Nearev 1978; Lieberman 1984; 1991]. La forma della laringe, unita alla capacità di controllo dei muscoli limitrofi che consente una maggiore modificazione della forma laringale, incrementa lo spettro delle possibilità articolatorie umane [Lieberman-McCarthy 1999].

Nei neonati sapiens sapiens e nei primati non umani la laringe si trova in una posizione più alta rispetto agli uomini adulti: ciò determina un cambiamento nel rapporto tra la lunghezza della canna orizzontale e quella della canna verticale del tratto vocale, con un incremento della proporzione in favore della canna orizzontale (2:1). Tale proporzione, molto distante da quella tipica del tratto vocale sopralaringeo umano adulto (1:1), sarebbe svantaggiosa per la produzione di suoni linguistici in quanto comporta l'impossibilità di produrre vocali la cui frequenza formantica si differenzi in maniera assoluta [ibidem].

I dati comparativi, dunque, dimostrano che la capacità articolatoria, indispensabile per il funzionamento del linguaggio, può svilupparsi solo se instanziata su una struttura anatomicamente ben definita: il tratto vocale sopralaringeo [Lieberman 1984].

A corroborare i risultati ottenuti dagli studi comparativi in merito alla necessità anatomica per la produzione di suoni articolati, vari studi [cfr. Deacon 2000] hanno dimostrato che la produzione di alcuni suoni vocalici, come quelli che comportano contemporaneamente l'espansione della cavità faringale e il restringimento della

cavità orale (come ad esempio in beet), è possibile solo grazie alla configurazione morfologica dell'apparato oro-vocale dell'uomo anatomicamente moderno. Proprio la morfologia del tratto vocale sopralaringeo, però, sembra comportare rischi per la respirazione e dunque svantaggi, da un punto di vista evolutivo. per la riproduttività della specie, principale obiettivo della selezione naturale. La discesa della laringe, infatti, comporta la condivisione di un tratto del canale di passaggio del cibo e dell'aria: la faringe. Durante la deglutizione, in sostanza, il canale della respirazione viene chiuso tramite l'epiglottide per impedire che residui liquidi e/o solidi della masticazione, dopo aver attraversato la faringe. possano finire nella trachea ostruendola e impedendo la respirazione. La possibilità che si verifichi un tale «errore» costituisce un chiaro svantaggio evolutivo: in sostanza l'Homo sapiens sapiens adulto deve scegliere se ingoiare o respirare. Se questa operazione non viene eseguita correttamente l'uomo corre il pericolo di affogarsi [Lieberman 1984]. In tale rischio, invece, non incorrono i primati non umani, la maggior parte dei mammiferi e i neonati del sapiens sapiens che presentano una laringe posizionata in alto. Nei primati, infatti, la cavità nasale viene sigillata durante la deglutizione dall'epiglottide e dal velo, impedendo così qualsiasi comunicazione tra la cavità orale e il canale respiratorio. La posizione bassa della laringe nell'uomo, dunque, costituirebbe uno svantaggio e la sua presenza come tratto anatomico caratterizzante dell'uomo anatomicamente moderno non sarebbe spiegabile adattativamente se non fosse connessa a un vantaggio evolutivo molto forte: la fonazione.

Le capacità articolatorie umane sono il risultato sia della mutazione di una struttura anatomica precedente sia di uno speciale adattamento degli atti respiratori alla fonazione [cfr. Lo Piparo 2003]. Ovviamente nessuna specie animale può adattare «volontariamente» la propria struttura anatomica e le funzioni a essa connesse: cioè non è possibile adattare modalità di respirazione a comportamenti che non sono specifici, propri, di una specie. I comportamenti fondamentali per la sopravvivenza della specie (come quelli connessi alla respirazione), infatti, vengono regolati da sistemi di controllo che fissano i limiti di tolleranza e impediscono sforzi eccessivi (come nel caso in cui i valori di carenza di ossigeno siano oltre la soglia di tollerabilità). Le modalità di respirazione, dunque, possono variare solo in seguito a modificazioni adeguate della struttura e della funzione respiratoria [cfr. Lenneberg 1967].

Nell'uomo uno degli stimoli principali per la regolazione della respirazione è la presenza di anidride carbonica (CO₂) nel sangue. Ouesta viene regolata dai movimenti di inspirazione ed espirazione che avvengono sia tramite la contrazione dei muscoli espiratori sia tramite il rilasciamento dei muscoli inspiratori. La respirazione, però, viene profondamente modificata durante la produzione verbale. In stato di riposo, infatti, il tempo di inspirazione risulta poco più breve del tempo di espirazione, il lavoro meccanico viene svolto principalmente dai nuscoli inspiratori e la respirazione risulta poco profonda [ibidem].

Durante la produzione delle parole, invece, la respirazione risponde sia agli stimoli interni forniti dalle necessità metaboliche dell'organismo sia all'attività articolatoria. A differenza dello stato di riposo, nella fonazione l'attività elettrica dei muscoli inspiratori, infatti, non si interrompe, neanche durante l'espirazione. Il tono muscolare toracico rimane costante e diventa asincrono rispetto ai ritmi respiratori. In sostanza durante la respirazione a riposo il volume del torace aumenta e diminuisce in concomitanza con l'inspirazione e l'espirazione. mentre durante la produzione linguistica i muscoli toracici mantengono il tono, il numero degli atti respiratori diminuisce, l'inspirazione risulta accelerata e l'espirazione rallentata in modo significativo. Questa modificazione è spiegabile considerando la variazione di passaggio che subisce l'aria durante la fonazione. Mentre nella respirazione, infatti, l'aria non incontra nessun ostacolo, durante l'articolazione vocale tutti gli elementi che costituiscono l'apparato fonatorio filtrano e «frenano» l'uscita dell'aria che subisce una resistenza al suo flusso attraverso un passaggio forzato [ibidem].

Le caratteristiche anatomiche e funzionali dell'apparato respiratorio, dunque, risultano essenziali per la produzione del linguaggio articolato umano. Strettamente connesso all'articolazione linguistica, anche il controllo a livello cerebrale dei meccanismi implicati nell'articolazione fine rientra nel quadro delle necessità anatomiche per il linguaggio.

Deacon [2000] sostiene che nell'evoluzione della specie sapiens sapiens i cambiamenti nella geometria del tratto vocale sopralaringeo sono soltanto gli elementi più visibili di una fitta trama di adattamenti indispensabili per la produzione del linguaggio articolato. La produzione di suoni negli esseri umani deriverebbe dalla capacità di apprendere nuove combinazioni e varianti di suoni vocalici non innati. A differenza degli altri animali non umani che producono un repertorio fisso di suoni limitatamente modulabile, anche a seguito di addestramenti intensivi, gli uomini sono in grado di apprendere, tramite processi imitativi, centinaia di combinazioni di suoni distinti.

Sempre secondo Deacon [ibidem] questa capacità sarebbe dimostrata dalla presenza nello sviluppo infantile, di una fase unicamente umana, non riscontrabile nelle altre specie animali: la lallazione. In tale periodo, infatti, si verificherebbe la familiarizzazione con i principali elementi combinatori del linguaggio urnano. Uno dei casi più vicini, adottati in campo etologico per dimostrare le capacità di apprendimento negli animali non umani, riguarda le capacità imitative negli uccelli canterini [cfr. Negus 1949; Marler 1970; 1976]. Queste capacità si baserebbero su una predisposizione innata ad apprendere i «dialetti sonori» della comunità cui appartengono. In sostanza i membri di tale specie nascono con un repertorio standard approssimativo (modello grezzo) di come dovrebbe essere il loro canto che funge da melodia di base distintiva dalle migliaia di altre tipologie di canti cui potrebbero essere esposti. Durante la fase di memorizzazione i canarini ascoltano il canto della propria specie e migliorano il modello grezzo che, in fase adulta, risulta identico a quello dei conspecifici. La predisposizione ad apprendere il «canto adulto» degli uccelli canterini dimostrerebbe l'importanza degli stimoli ambientali per la produzione dei suoni specie-specifici, una sorta di fase di prova simile alla lallazione umana.

In realtà tale abilità imitativa degli uccelli canterini non produce gli stessi effetti della fase di lallazione. Infatti, se un bambino non viene esposto al linguaggio durante il periodo critico per la sua acquisizione, non riuscirà a recuperare tale capacità in seguito (si pensi alle limitate capacità linguistiche degli enfants sauwages descritte nel cap. VI, § 1.1), mentre se un uccello canterino non viene esposto al canto dei conspecifici comunque sarà in grado di produrre il «canto grezzo», innato. Inoltre le capacità imitative degli uccelli canterini non determinano possibilità articolatorie modulabili come negli uomini e questa limitazione deriva anche dalla natura dei sistemi di controllo muscolare che gestiscono i movimenti articolatori negli animali non unani [Deacon 1997].

Negli uccelli i suoni vengono prodotti tramite una struttura vocale simile a quella umana, la siringe, posizionata in basso nel torace. La posizione e le connessioni muscolari di tale struttura rendono evidenti le differenze tra la funzione dell'apparato fonatorio animale e la funzione della laringe umana. I muscoli laringali negli animali non umani, infatti, sono muscoli viscerali in stretto contatto con i sistemi di controllo della deglutizione, della respirazione e di altre funzioni motorie automatiche, preprogrammate, dipendenti solo in minima parte dai sistemi ererbrali che guidano i processi di apprendimento. In particolare, i muscoli che garantiscono la mobilità della siringe appartengono in gran parte al sistema motorio periferico libidemi.

L'impossibilità degli animali non umani di controllare volontariamente le vocalizzazioni, dunque, dipende dal fatto che i muscoli che le producono sono parte integrante del sistema viscero-motorio che regola automaticamente la respirazione impedendo dannosi passaggi di sostanza dal canale nutritivo a quello respiratorio (Deacon 1992). Il sistema viscero-motorio, inoltre, è connesso con lo stato emotivo, che consente aggiustament inell'attivazione muscolare. In pratica, in base allo stato di eccitazione, tale sistema aumenta o diminuisce i battiti cardiaci e le frequenze respiratorie. La fonazione negli animali, dunque, risulta strettamente connessa con lo stato di attivazione emotiva.

Le capacità articolatorie umane, invece, dimostrano chiaramente un controllo volontario dei muscoli della laringe, combinato col controllo dei movimenti delle labbra, della lingua, della mandibola e con la gestione dei movimenti respiratori. Ovviamente un tale «scivolamento evolutivo» verso la coordinazione volontaria dei movimenti laringali e respiratori è stato determinato da un cambiamento nel sistema nervoso [Deacon 2000]. Negli esseri umani il controllo della produzione vocale deriverebbe da un diverso cablaggio neurale: è probabile che i movimenti dell'apparato vocale e la respirazione si siano emancipati dal sistema automatico innato dei primati e siano stati ricablati con nuovi pattern di connessione nella neocorteccia. Il nuovo sistema di gestione dei movimenti articolatori si sarebbe separato dal sistema automatico innato delle vocalizzazioni per garantire il controllo cosciente dell'alternanza tra deglutizione e respirazione [Johansson 2005]. È per tale motivo che negli esseri umani l'apparato di vocalizzazione risulta indipendente dallo stato di attivazione emotiva. Ovviamente il sistema di gestione automatica delle vocalizzazioni è ancora attivo - anche se non dominante - nell'uomo durante, ad esempio, le esclamazioni di dolore o le risate, produzioni vocali nella maggior parte dei casi poco controllabili anche durante la fonazione

Varie teorie collegano i cambiamenti nella morfologia e nella gestione coordinata del tratto vocale sopralaringeo con modificazioni del sistema nervoso centrale e periferico.

Il sistema di controllo della respirazione, ad esempio, è garantito da una quantità elevata di neuroni motori che dalla colonna vertebrale si dirigono verso il torace [MacLarnon e Hewitt 1999].

Inoltre è possibile rilevare un ingrossamento del canale nervoso ipoglossale, direttamente connesso con i nervi che regolano il movimento della lingua. Tale canale risulta particolarmente grande negli uomini rispetto agli altri primati probabilmente proprio per il controllo fine dei movimenti della lingua necessari per l'articolazione [Johansson 2005].

Nonostante le evidenze evolutive relative alla struttura cerebrale, la definizione delle aree cerebrali coinvolte nella produzione e nella comprensione del linguaggio risulta, tuttavia, problematica. Non c'è accordo, infatti, né su quali meccanismi cerebrali siano coinvolti nel funzionamento del linguaggio, né se esistano moduli cerebrali dedicati a tale funzione, né sulle possibili influenze genetiche nella determinazione delle strutture cerebrali a essa deputate.

Negli ultimi dieci anni, infatti, il modello classico della localizzazione delle aree cerebrali dedicate al linguaggio è stato messo in discussione. Tale modello discusso nel cap. VI, § 2.2 – si basava sull'attribuzione del funzionamento del linguaggio principalmente all'area di Broca, locata nel terzo giro frontale anteriore sinistro, all'area di Wernicke, locata nel secondo giro temporale posteriore sinistro, e alla giunzione neurale tra le due aree (struttura corticale studiata da Lichtheim). Ovviamente i mezzi a disposizione dei due pionieri dell'afasiologia erano le indagini post mortem. Ma ancor prima dell'impiego delle macchine per la visualizzazione dell'attività cerebrale in vivo, la fenomenologia e le manifestazioni sintomatiche dei soggetti definiti afasici di Wernicke e di Broca lasciavano intravedere qualche crepa nel modello classico. Se tale modello, infatti, fosse stato valido, i soggetti colpiti nella zona frontale avrebbero dovuto mostrare deficit esclusivamente nella produzione e i soggetti con danni cerebrali nella zona temporale posteriore deficites clusivamente nella comprensione. In realtà, entrambi i tipi di afasia comportano alterazioni sia della comprensione che dell'articolazione linguistica. Con le tecniche di visualizzazione cerebrale (fMRI, PET, vedi scheda tecnica in Appendice) si è potuto poi constatare che in condizioni fisiologiche le aree cerebrali attivate durante la produzione e la comprensione linguistica non si limitano a quella di Wernicke e di Broca ma riguardano anche altre zone dell'emisfero sinistro e alcune zone controlaterali dell'emisfero destro.

Ovviamente il modello classico del funzionamento del linguaggio si basava su una spiegazione localizzazionista delle funzioni.

Oggi c'è abbastanza accordo nel ritenere che l'attività cerebrale venga determinata dalla formazione di sistemi neurali che gestiscono le varie attività dell'organismo in maniera complessa.

Secondo Lieberman [2002], ad esempio, i circuiti neurali umani si segregano in popolazioni di neuroni che regolano le attività umane complesse, come camminare, parlare e comprendere. Per tale ragione è impensabile l'attivazione di una singola area durante, ad esempio, l'ascolto di una frase. È probabile, invece, che insieme all'area di Wernicke si attivino anche strutture neurali preposte alla percezione dei suoni o all'associazione tra le parole e gli oggetti del mondo reale. Inoltre, molte delle componenti cerebrali in funzione durante la produzione verbale regolano altri aspetti del comportamento. Ad esempio i gangli basali, che gestiscono la coordinazione dei muscoli orofacciali durante l'articolazione linguistica, entrano in gioco anche per il ragionamento astratto e nei processi sintattici [ibidem].

Sembra, dunque, che la gestione della funzione linguistica a livello neurale sia abbastanza complessa e riguardi non solo le strutture corticali, ma anche quelle subcorticali, evolutivamente precedenti, ma probabilmente rifunzionalizzate a scopi linguistici (cfr. cap. VI, § 2.2).

1.2. Basi genetiche

L'attivazione delle strutture neurali coinvolte nell'attività linguistica sembra mostrare una configurazione caratteristica con poca variazione individuale, a meno di patologie. L'universalità della funzione linguistica, la comune attivazione delle strutture cerebrali, ma anche la regolarità degli stadi di sviluppo ontogenetico del linguaggio negli esseri umani, hanno spinto alcuni ricercatori a inotizzare la presenza di un gene che determinasse in maniera specifica l'emergere del linguaggio. I tentativi di individuare un tale gene non hanno, tuttavia, avuto riscontro e, a tutt'oggi, non è chiaro fino a quale livello funzionale agisca l'informazione cromosomica

Secondo Edelman [1987], ad esempio, l'architettura cerebrale è regolata da algoritmi genetici. In particolare, durante l'embriogenesi alcune famiglie di geni regolatori (geni che attivano e/o inibiscono l'attivazione di altri geni) tra cui gli Hox e i Pax, stabiliscono la differenziazione delle cellule neurali e la loro migrazione in posizioni determinate. In sostanza le cellule cerebrali progenitrici si spostano seguendo schemi dettati da algoritmi genetici e dando forma a diversi strati che costituiscono la struttura cerebrale. Ma già dalle prime fasi della costituzione neurale, nonostante queste siano gestite da algoritmi genetici, varie cellule possono morire e venire sostituite da altre in maniera assolutamente variabile. Inoltre dopo questo stadio in cui l'organizzazione cellulare viene gestita dalle istruzioni cromosomiche. il controllo delle connessioni diventa epigenetico, guidato, cioè dalle interazioni tra i neuroni: i neuroni che scaricano insieme si «cablano» insieme e si legano in una mappa neuronale. Anche se la struttura cerebrale è programmata geneticamente e il cervello mostra una data configurazione generale, i movimenti e le morti dei neuroni sono variabili, così come lo è la formazione delle popolazioni sinaptiche che gestiscono le varie attività. In base a questa teoria, dunque, l'architettura generale del cervello sarebbe programmata geneticamente- e questo spiegherebbe l'universalità delle strutture cerebrali- ma, ad un certo momento, la collocazione cellulare e il rafforzamento delle sinapsi diventa epigenetico, non più controllato dalle istruzioni del DNA bensì dipendente dalle esperienze individuali – e questo spiegherebbe le differenze soggettive nelle funzioni cognitive.

La teoria di Edelman si pone come tentativo di conciliazione tra le ipotesi che sostengono l'importanza degli stimoli ambientali per lo sviluppo dell'essere umano e quelle che ritengono le determinanti genetiche fondamentali per lo sviluppo di funzioni tipicamente umane, come il linguaggio.

Queste ultime hanno ricevuto particolare impulso dalla scoperta di un gene la cui alterazione è direttamente responsabile di un deficit linguistico (cfr. cap. VI. § 2.1). Il gene è stato identificato sulla base di studi condotti sui membri affetti di tre generazioni di una famiglia inglese, la KE family. I soggetti portatori del disturbo mostrano una tipica incapacità a del'inire i movimenti articolatori per la produzione di sillabe complesse, nonostante da un punto di vista neurologico o sensorio non presentino danni. Inoltre, sebbene il OI non-verbale medio dei membri affetti è più basso di quello dei membri non affetti, gli individui affetti hanno abilità non verbali vicine alla media della popolazione [cfr. Hurst et al. 1990]. Anche i test psicolinguistici somministrati ai membri affetti della famiglia inglese hanno dimostrato che il disturbo riguarda alcuni aspetti della competenza linguistica (abilità di scomporre le parole nei loro fonemi costitutivi) e delle abilità grammaticali (incluse la produzione e la comprensione delle inflessioni della parola e della struttura sintattica). Proprio per le caratteristiche del disturbo alcuni ricercatori avevano ipotizzato che il gene, la cui alterazione causava tali deficit, fosse responsabile della fisiologica abilità grammaticale [Gopnik 1990]. Studi successivi condotti da Vargha-Khadem et al. [1990; 1995; 1998] hanno dimostrato che il disturbo non è ristretto ad aspetti selettivi della grammatica. ma provoca profonde difficoltà nel controllo dei movimenti complessi durante la coordinazione bocca-faccia, impedendo così il normale andamento dei discorsi. Il linguaggio utilizzato tende ad essere semplificato, i soggetti non riescono a gestire una sequenza media di movimenti articolatori: fanno uso ridotto delle consonanti impure (boon invece di spoon) e omettono spesso il primo suono (able invece di table) [cfr. Hurst et al. 1990, 354]. Sembra dunque che la disprassia orofacciale, cioè un grave deficit articolatorio, sia il cuore del disturbo dei membri affetti della KE family.

L'analisi dei corredi cromosomici dei membri affetti ha consentito l'individuazione del gene mutato: un gene regolatore, il FoxP2, locato nel cromosoma 7 e membro della famiglia delle proteine forkbead che codificano fattori di trascrizione coinvolti nel controllo del programma genetico delle cellule. Infatti, tali fattori svolgono un ruolo determinante nella diversificazione delle cellule durante l'embriogenesi: regolando l'attivazione/inibizione dei geni consentono il giusto dosaggio proteico per la differenziazione tessuto-specifica delle cellule dell'organismo che in tal modo si modificano funzionalmente ma anche strutturalmente. In particolare il FoxP2 entra in gioco in un momento fondamentale per l'uomo: l'embriogenesi del cervello. Inoltre, essendo un fattore di trascrizione, tale gene regola la differenziazione embriogenetica di altre cellule di organi vitali come il cuore, i polmoni e l'intestino [Marcus e Fisher 2003. 261]. Ci si potrebbe chiedere, a questo punto, per quale motivo i soggetti affetti da mutazioni nel FoxP2 mantengano inalterate le altre funzioni organiche, visto che il gene coinvolto nella mutazione è un fattore di trascrizione, un regolatore attivo nell'embriogenesi. L'«indennità» dei membri della KE family da alterazioni anatomiche invalidanti o addirittura mortali deriva dalla natura diploide del nostro corredo cromosomico (possediamo due copie per ogni gene). Poiché la mutazione colpisce una sola copia del FoxP2, la quantità di dosaggio proteico prodotta basta per il normale funzionamento di cuore, intestino e polmoni, ma non basta per la gestione dei movimenti articolatori

La mutazione presente nel FoxP2 dei membri affetti della KE family inattiva la normale funzione di regolatore della proteina determinando una conseguente alterazione della sequenza proteica nelle cellule cerebrali con conseguenze nei meccanismi cerebrali che regolano la selezione dei movimenti articolatori del linguaggio. Il FoxP2, dunque, sarebbe il «gene dell'articolazione linguistica» in quanto la sua mutazione produce difficoltà di coordinazione dei movimenti orofacciali fini.

Studi di fMRI condotti sui membri affetti della famiglia [Liégeois et al. 2003] (cfr. cap. VI, § 2.1) dimostrano come durante compiti di produzione linguistica tali soggetti mostrino un pattern di attivazione neurale anomalo, diffuso in più zone della corteccia sinistra e controlaterale, mentre nei soggetti normali è evidente una distribuzione tipicamente localizzata nelle zone dedicate alla produzione linguistica. Tali studi, inoltre, hanno reso evidente che ad essere colpita non è soltanto l'attribuzione delle funzioni a strutture cerebrali precise ma anche la funzionalità dei gangli basali che gestiscono la coordinazione del movimento orofacciale con il funzionamento del tratto vocale sopralaringeo. Il FoxP2, come dimostrato dalle più recenti indagini [Scharff e Haesler 2005], è coinvolto nello sviluppo delle strutture corticali e subcorticali essenziali per la produzione del linguaggio e contemporaneamente coinvolte nella pianificazione motoria delle azioni, nell'esecuzione dei comportamenti e nell'apprendimento delle procedure per eseguirli.

Poiché regola un aspetto fondamentale della funzione linguistica, unicamente umana, alcuni ricercatori avevano ipotizzato che il FoxP2 fosse specie-specifico, tratto caratterizzante della specie umana, esclusivo degli nomini quanto il linguaggio. In realtà Enard et al. [2002] hanno dimostrato che il FoxP2 è presente non solo negli oranghi e negli scimpanzé, ma anche nei topi appartenenti a una linea evolutiva distante da quella umana. Quella che in apparenza può sembrare una contraddizione (il fatto che un gene che regola strutture che determinano funzioni unicamente umane sia presente anche in animali che tali funzioni non presentano) è spiegabile attraverso il percorso evolutivo del gene. Il FoxP2 umano contiene nella sua struttura dei cambiamenti amminoacidici rispetto a quello animale che ne hanno modificato la capacità di regolazione proteica. Secondo Enard, infatti, la prima mutazione del FoxP2 si è verificata nel topo già 130 milioni di anni fa, mentre le linee evolutive del topo e delle scimmie si sono separate dopo la seconda mutazione del gene avvenuta circa 70 milioni di anni fa. La mutazione che ha determinato la comparsa della linea evolutiva dell'uomo è datata circa 4.6-6.2 milioni di anni fa, mentre la seconda mutazione, quella che ha reso la struttura della proteina così come è nell'uomo moderno, si sarebbe verificata circa 200,000 anni fa. Inoltre Scharff e Haesler [2005] hanno dimostrato che la seguenza amminoacidica (AA) presente nel FoxP2 umano non si riscontra nemmeno in quelle specie animali, come gli uccelli canterini, le balene e i delfini, che necessitano dell'imitazione vocale per l'acquisizione della vocalizzazione adulta. Lo stesso studio conclude che non è stata individuata nessuna correlazione tra la capacità di una data specie per l'apprendimento vocale e una particolare versione della regione codificante del loro FoxP2. I risultati delle ricerche che hanno comparato strutture genetiche di specie animali differenti, anche evolutivamente distanti tra loro, confermano l'impossibilità che una funzione complessa e le strutture anatomiche su cui si instanzia possa comparire d'improvviso. La presenza di versioni «geneticamente precedenti» di un gene come il FoxP2, che compartecipa alla formazione delle strutture anatomiche necessarie per la funzione linguistica, in animali come i coccodrilli, gli uccelli, i topi e i primati, non pregiudica la sua funzione negli esseri umani. Anzi è ingenuo pensare che proprio una funzione così complessa come il linguaggio non derivi da modificazioni di strutture e funzioni precedenti già complesse [Pennisi, Plebe e Falzone 2004].

L'individuazione del FoxP2 ha fornito le basi per una migliore comprensione della relazione tra istruzioni genetiche e strutture cerebrali connesse a funzioni cognitive complesse, come il linguaggio [per una sintesi su questo dibattito, cfr. Falzone 2004b]. Ma tale individuazione non spiega fino a che punto arriva la «gestione genetica» dei circuiti neurali connessi al linguaggio e di certo non può essere considerata la prima tappa della mappatura genomica delle funzioni cognitive. È evidente dai dati sin qui presentati che il FoxP2 regola solo l'espressione proteica delle cellule cerebrali e in particolare dei gangli basali. Ciò che accade dalla formazione delle configurazioni neurali alla stabilizzazione delle funzioni cognitive non è più gestito dai geni. Inoltre l'azione di un gene è spesso interconnessa con quella di altri geni per cui il risultato finale è raggiungibile solo tramite una loro azione integrata (si pensi ai caratteri multifattoriali come il colore degli occhi negli esseri umani che viene stabilito da più geni contemporaneamente). È importante, però, precisare come senza le mutazioni genetiche che hanno prodotto l'attuale architettura cromosomica umana sarebbe stata impossibile l'implementazione delle capacità articolatorie e dunque della funzione linguistica.

1.3. Specificità etologiche

Nella ricerca dei caratteri controllati dai geni non rientrano soltanto gli aspetti strutturali, anatomici, di una data specie, ma anche l'esibizione di certi comportamenti. Gli studi di etologia classica, infatti, hanno dimostrato che alcuni comportamenti sia negli uomini sia negli animali seguono schemi prevedibili. Tali schemi sarebbero per la maggior parte innati: corrisponderebbero a programmi ereditati filogeneticamente che si evolvono nel corso dello sviluppo.

Conoscere quali aspetti del comportamento umano sono determinati da necessità biologiche e quali, invece, vengono appresi è importante per la comprensione dei processi evolutivi che hanno condotto la nostra specie a differenziarsi dalle altre sotto la pressione di forze selettive positive che ne hanno favorito e velocizzato la stabilizzazione dei caratteri specie-specifici. Proprio la funzione linguistica per la sua esclusività è stata sempre inserita all'interno della lista delle specificità dell'Homo sapiens sapiens. In realtà nella definizione etologica, specie-specifici sono quegli aspetti del comportamento dettati da adattamenti filogenetici e attivati da meccanismi innati [Eibl-Eibesfeldt 1987]. Niente, dunque, di unico nel senso comune del termine, come è ritenuto il linguaggio. Non è affatto detto che i comportamenti specie-specifici siano quelli più «spettacolari». Anzi proprio perché guidati dalla programmazione genetica di norma essi si riferiscono a meccanismi inconsapevoli e coatti, non controllabili e obbligatori. Sono quei comportamenti che caratterizzano una specie in quanto questa non può non esibirli. Un topo appena nato non si può sottrarre all'attività di ricerca di materiale da portare al nido. Eibl-Eibesfeldt [ibidem] ha dimostrato che ratti femmina anche se privi di esperienza cioè deprivati dai contatti ambientali soliti e dunque dalle interazioni con i conspecifici, mostrano un impulso molto forte verso la raccolta e la costruzione del proprio nido. Tale istinto per la costruzione risulta così forte che un primo lotto di topi, in seguito alla deprivazione ambientale, lasciati liberi di esplorare un ambiente senza oggetti, ha trattato la propria coda come materiale da costruzione: «uscivano dal loro giaciglio cercando qua e là. poi "trovavano" la propria coda, la portavano nel posto prescelto per nidificare e la deponevano con cura» [Lorenz 1978, 67].

La tecnica della deprivazione ambientale è un protocollo sperimentale preciso che consente di stabilire cosa di un comportamento è specie-specifico, programmato filogeneticamente, e cosa non lo è. Consiste nell'allevare animali di una data specie sottraendo loro stimoli esterni, ma garantendo gli input essenziali per far emergere il comportamento standard2.

Se, nonostante la privazione delle determinanti ambientali, gli animali mostrano comunque un dato comportamento, questo, allora, sarà dettato da algoritmi genetici, inscritto nelle specificità della specie, indipendente dalle condizioni esterne e dai processi di apprendimento/istruzione. Il comportamento specie-specifico non può non venire esibito e se viene impedito può produrre atti stereotipati

² La presenza di un corredo minimo di stimoli è indispensabile per evitare errori di strutturazione dell'esperimento che ne intaccherebbero la validità interna. A d'esempio, in uno dei primi esperimenti di privazione di esperienza alcuni scimpanzé furono allevati in oscurità totale e poiché portati alla luce non riuscivano a vedere se ne era dedotto che la capacità di visione e discriminazione delle immagini nei primati era appresa. In realtà ricerche successive hanno dimostrato che l'oscurità aveva provocato un'atrofia completa della retina ed era questo a impedire la visione negli scimpanzé deprivati. Gli etologi che adottano tecniche di deprivazione ambientale, dunque, devono prevedere la possibilità che un certo comportamento non si manifesta in un dato animale deprivato non perché appreso, ma perché lo sperimentatore ha eliminato gli input ambientali minimi per la sua attivazione [Lorenz 1978].

o «aggressivi», o ancora di «iperattività», come nel caso degli uccelli migratori che tentano in maniera eccessivamente energica di fuggire dalle gabbie, sebbene grandi e comode, soltanto nel periodo biologicamente stabilito delle migrazioni Dawkins 1988].

Gli etologi definiscono tali comportamenti stenotopici, meccanici e invariabili, in opposizione a quelli euritopici, flessibili e appresi, che dipendono dalle capacità di ogni singolo individuo appartenente ad una data specie di creare le condizioni migliori per risultare «adatto» all'ambiente. E risultare adatto significa migliorare la propria fitness, la propria riproduttività. Comportamenti stenotopici, guidati da schemi ereditati filogeneticamente, ed euritopici, frutto di continui adattamenti ambientali, concorrono alla formazione della tipica struttura comportamentale di una data specie. In ogni specie è possibile individuare un gradiente di «stenoeuritopicità» in base al grado di determinazione genetica che i comportamenti mostrano. Più una specie è euritopica, più essa appare come «specialista della non-specializzazione» [Lorenz 1959]. La specie umana è la più euritopica del regno animale [Pennisi, Plebe e Falzone 2004].

La specificità, in senso etologico, delle strutture che consentono la produzione linguistica e la loro selezione positiva nella storia evolutiva che ha condotto all'uomo anatomicamente moderno sono state a lungo elementi di confronto con le strutture di produzione vocale presenti in altre specie animali, soprattutto in quelle evolutivamente più vicine al sapiens sapiens. Secondo Fitch [2002a] lo studio comparativo risulta più incisivo e approfondito per la comprensione dei meccanismi evolutivi di quello paleoantropologico che ha per oggetto di studio resti fossili e da guesti può soltanto dedurre la struttura delle parti molli, che non si fossilizzano.

Inoltre il confronto tra specie diverse offre due generi di vantaggi:

1. la valutazione filogenetica dell'origine di determinati moduli comportamen-

2. la possibilità di studiare negli animali alcuni aspetti del comportamento umano che nell'uomo risultano estremamente complessi e difficili da mantenere sotto stretto controllo in determinate condizioni sperimentali.

Nei suoi studi sul valore evolutivo della frequenza formantica nei mammiferi Fitch ha dimostrato come la posizione bassa della laringe non è una prerogativa umana. Alcune specie animali, come i cani (Canis familiaris), le capre (Capra hircus), i maiali (Sus scrofa) e i tamarini (Sanguinus oedipus), infatti, sono in grado, durante le loro produzioni sonore, di abbassare la laringe fino a farle assumere una posizione molto simile a quella umana. Tale comportamento. osservato sottoponendo gli animali ai raggi x, dimostrerebbe l'elasticità della laringe in specie animali non umane e la loro abilità nel produrre frequenze formantiche specifiche.

L'abbassamento della laringe durante la fonazione, secondo Fitch [ibidem], sarebbe funzionale alla produzione di suoni più forti. I suoni prodotti tramite la cavità nasale, infatti, a causa della sua struttura molto complessa, vengono assorbiti maggiormente dalle strutture interne e dunque la loro intensità viene smorzata molto. I suoni prodotti attraverso la cavità orale, invece, incontrano meno ostacoli. Risultando più forti, tali suoni, dunque, sarebbero i più adatti in alcuni casi (i richiami o l'avvertimento della presenza di pericoli), a differenza dei suoni puramente nasali, più bassi e meno intensi. Inoltre, studi di cineradiografia hanno dimostrato come in due specie di caprioli (Cervus elaphus e Dama dama) la laringe assuma, in età postpuberale, una posizione bassa permanente [Fitch e Reby 2001] che consente loro di emettere suoni bassi. Durante il periodo dell'accoppiamento questi caprioli emettono i loro richiami abbassando ancora di più la laringe, fino al limite fisiologico. Tale abbassamento esagerato, secondo Fitch [1999; 2000; 2002a], è spiegabile considerando la correlazione esistente tra la lunghezza della laringe e la stazza corporea. In sostanza, maggiore è la stazza dell'animale, più lunga sarà la sua laringe, più forte e bassa sarà la frequenza formantica del suono emesso. La correlazione tra le dimensioni corporee e il tipo di vocalizzazioni ha una ragione evolutiva: i nostri antenati avrebbero utilizzato questa correlazione per stimare la grandezza dei predatori in condizioni di visibilità limitata (fogliame denso o oscurità). Questo meccanismo di riconoscimento del volume del corpo sarebbe sfruttato da alcune specie di animali. come i caprioli, che abbassano fino ai limiti fisiologici la laringe per esagerare la stima delle proprie dimensioni corporee.

Ovviamente è possibile individuare alcune differenze tra la laringe umana e quella dei caprioli, pur essendo entrambe in posizione bassa. Durante l'abbassamento della laringe, infatti, l'osso ioide dei caprioli rimane in alto grazie a una serie di legamenti tiroioidali molto elastici, mentre nell'uomo scende insieme alla laringe. Inoltre durante la respirazione il velo e l'epiglottide restano in contatto nei caprioli, mentre nell'uomo no.

Il confronto con le strutture anatomiche che consentono la fonazione negli animali non umani ha gettato luce sulla loro capacità di modificare la struttura del tratto vocale in maniera tale da produrre frequenze formantiche specifiche, ma ha anche consentito la formulazione di ipotesi relative all'apparato vocale degli ominidi. Secondo Fitch [2000] è probabile che gli ominidi, i Neanderthal in particolare, fossero in grado di abbassare la loro laringe durante le vocalizzazioni, così come accade nei canidi o nei cervidi, producendo così suoni simili a quelli del sapiens sapiens. Ma proprio lo sforzo muscolare necessario per l'abbassamento della laringe sarebbe uno degli impedimenti principali per incrementare la capacità articolatoria.

A differenza di quanto sostenuto da Fitch, infatti, il fatto di poter posizionare la laringe in basso non garantisce nuove abilità articolatorie. Il tempo in cui è possibile mantenere abbassata la laringe, infatti, è proporzionale alla capacità di resistenza del singolo individuo nel mantenere in tensione i muscoli. Sarebbe molto difficile produrre suoni articolati, se impegnati già in tale attività motoria. L'ipotesi dell'aumento della stazza, però, fornisce una nuova interpretazione dei meccanismi evolutivi che hanno condotto alla selezione del tratto vocale umano. Secondo tale ipotesi, infatti, l'abbassamento della laringe con la conseguente esagerazione del volume corporeo, sarebbe un elemento importante per la scelta del partner sessuale e dunque sarebbe direttamente coinvolto nell'aumento della fitness della specie. Nel caso dell'uomo, l'abbassamento permanente della laringe

avrebbe fornito una struttura anatomica fortemente vantaggiosa dal punto di vista riproduttivo, in seguito rifunzionalizzata per la produzione del linguaggio. Sembra che l'abbassamento della laringe sia un tratto evolutivo comune a molte specie animali. È probabile, dunque, che si tratti di un'analogia, cioè di un adattamento funzionale avvenuto parallelamente in relazione a un dato ambiente. Nell'analogia una stessa informazione adattativa viene raggiunta in assenza di una fonte comune. In sostanza la somiglianza non viene determinata dalla discendenza da un antenato comune né da una fonte di tradizione comune (come nel caso dell'omologia); sarebbe una sorta di somiglianza funzionale. Eibl-Eibesfeldt [1987] chiarisce tale concetto sostenendo che non è necessario inotizzare una comune origine culturale per spiegare la somiglianza tra le accette di pietra dei popoli europei, asiatici o africani dell'Età della Pietra: semplicemente la forma dell'accetta dipende dalla sua funzione, è un processo convergente. Lo studio delle analogie è importante quanto quello delle omologie ritenute decisive per la ricostruzione dell'evoluzione filogenetica. Le analogie possono fornire indicazioni sui meccanismi generali di adattamento e di sopravvivenza, pur non assumendo nulla dal punto di vista filogenetico.

La stabilizzazione di una struttura che consente una produzione vocale «virtuosa» come quella umana potrebbe essere stata selezionata positivamente nel corso dell'evoluzione con gli stessi meccanismi e per le stesse ragioni funzionali delle strutture fonatorie degli animali non umani, ma l'uso che oggi ne fa l'Homo sapiens esula dai fini originari. È improbabile che la discesa della laringe nell'uomo sia vantaggiosa per il solo scopo di ingrandire, a scopi sessuali e di difesa, la propria stazza corporea. I meccanismi di rifunzionalizzazione hanno prodotto un riadattamento di tale struttura che, una volta selezionata positivamente grazie a un certo vantaggio evolutivo - che sia l'esagerazione della propria taglia o la comunicazione interpersonale – ha comunque consentito l'articolazione e la modulazione fine di suoni in sequenze più o meno complesse con frequenze formantiche tipiche. Una struttura che rende l'essere umano l'unico in grado di produrre vocali la cui frequenza formantica si differenzia in maniera assoluta [Lieberman e McCarthy 1999]. Inoltre il controllo degli organi di fonazione negli animali sembra affidato a un sistema nervoso semiautomatico (cfr. supra, § 1.1). La gestione volontaria della produzione verbale umana sembra rientrare non in quella sfera del comportamento determinata dalla necessità genetica, ma tra le capacità degli organismi di determinarsi e di produrre adattamento funzionale senza l'intervento di istruzioni cromosomiche imprescindibili. Lo spazio euritopico rappresenta il dominio gestito dalla propria individualità, dalla propria abilità di determinarsi in un ambito non controllato dalla necessità genetica. E proprio la funzione linguistica sembra essere l'esempio della più ampia euritopicità [Pennisi 2005].

2. EVOLUZIONE DEL LINGUAGGIO

Il quadro della ricostruzione dei meccanismi evolutivi che hanno prodotto la funzione linguistica è molto complesso. Già Darwin nel suo The descent of man and selection in relation to sex [1871] tratta dei processi che hanno condotto al linguaggio umano e alle sue caratteristiche precipue. In parziale contraddizione con la sua teoria sull'evoluzione delle specie animali. Darwin cerca di dimostrare la presenza di precursori del linguaggio nelle altre specie animali non umane arrivando a proporre il sogno dei cani come esempio di «composizionalità»! (I.2, 74). L'apparente contraddizione dell'intento darwiniano basato su una dimostrazione continuista è interpretabile col·locandone storicamente il pensiero. Nell'epoca in cui Darwin scrive, le idee imperanti relative alla natura dell'uomo erano vincolate all'origine divina della creazione e all'immobilismo del mondo. Il creazionismo, fortemente legato alla fede cristiana, attribuiva l'origine delle diverse specie viventi a un dio benevolo, il quale aveva posto l'uomo in una condizione privilegiata all'interno della gerarchia della natura al cui interno erano inscritti i principi teleologici che consentivano la stabilità del mondo. Darwin si trovava a fronteggiare dispute accese sulla validità delle sue tesi e in questo senso sono interpretabili le modifiche addotte al suo «programma evolutivo» dell'origine delle specie nelle sei edizioni pubblicate. In sostanza, Darwin era costretto a legittimare in continuazione le sue posizioni tanto che alla sesta edizione premise, descrivendone le teorie, i nomi dei trentaquattro autori che avevano anticipato il concetto di evoluzione degli esseri viventi, quasi a voler giustificare la sensatezza delle sue affermazioni. La posizione gradualista assunta dal pensiero darwiniano sarebbe interpretabile, dunque, come esigenza di contrapporsi al creazionismo imperante: dimostrando la continuità delle specie, la derivazione di una specie dall'altra, Darwin poteva confutare la tesi dell'immobilità del creato. Ciò lo condusse a negare alcune evidenze paleologiche come il ritrovamento di resti fossili che accreditavano cambiamenti repentini nelle strutture anatomiche delle specie ed estinzioni di massa.

Dopo la teoria darwiniana che ipotizzava una continuità tra la funzione comunicativa animale e la funzione linguistica umana – continuità di strutture ma anche di caratteristiche funzionali - l'interesse verso i processi evolutivi che hanno condotto al linguaggio in tempi recenti si è indirizzato verso l'individuazione di ciò che rende la funzione linguistica unicamente umana.

Oggi alcune teorie sostengono l'innatezza del linguaggio, una funzione emersa indipendentemente dalle dinamiche evolutive della selezione naturale [cfr. Chomsky 1975; Pinker e Bloom 1990; Bickerton 2003; Lieberman 2000], Tali teorie non selezioniste si fondano sull'universalità della funzione linguistica e sulla sua complessità, talmente elevata da non poter essere emersa dalle costrizioni della selezione naturale. I meccanismi selettivi possono agire a livello delle strutture su cui poi si è instanziato il linguaggio con tutta la sua complessità. modificando la funzione originaria della struttura (exaptation).

Altre teorie sostengono, invece, che proprio per la sua complessità e per la sua importanza per l'uomo non è pensabile che la funzione linguistica sia emersa indipendentemente dai meccanismi di selezione. Il linguaggio, incrementando le capacità relazionali e comunicative dell'uomo ha aumentato le sue possibilità adattative ed è stato selezionato positivamente, fissandosi in maniera permanente all'interno della popolazione.

Acquisizione evolutiva o dotazione naturale, la capacità di articolare suoni linguistici, di fatto, è stata da sempre considerata prerogativa dell'Homo sapiens sapiens. Molte ricerche hanno prodotto risultati che corroborano tale tesi. In particolare Lieberman [1984; 1991; Lieberman e Crelin 1971] ha dimostrato come l'unicità del linguaggio per la specie umana sia identificabile già a livello anatomico, tramite i dati della paleoantropologia, cioè i resti fossili degli ominidi e dei primi sapiens. Inoltre, studi di paleoneurologia hanno testimoniato come i cambiamenti nella struttura della scatola cranica possano aver consentito la tipica configurazione neurale dell'Homo sapiens sapiens differenziandolo dagli altri ominidi che presentavano struttura anatomica e funzioni connesse differenti [Lieberman e Crelin 1971; Lieberman, Crelin e Klatt 1972], Sembra, dunque, che il riferimento ai dati paleoantropologici e paleoneurologici sia importante per la comprensione dei processi evolutivi alla base del linguaggio umano.

2.1. Paleoantropologia e paleoneurologia del linguaggio

I primi dati paleoantropologici che hanno destato interesse per la ricostruzione evolutiva del linguaggio riguardavano le caratteristiche dei primi sapiens e le differenze anatomiche che essi sembravano possedere in confronto agli ominidi. Ciò che interessava, in sostanza, era l'individuazione di tratti anatomici speciespecifici del sapiens sapiens, in particolare relativi alla sua presunta esclusività delle funzioni superiori, come quella linguistica.

Parziale soddisfazione a tale ricerca è stata fornita dagli studi, ormai molto noti, condotti da Lieberman [1975; 1991] che hanno datato la comparsa del tratto vocale ricurvo a due canne – il tratto che segna la possiblità dell'insorgenza della capacità articolatoria umana - circa 100.000 anni fa, periodo in cui, secondo i paleoantropologi, si sarebbe distaccata la linea evolutiva del sapiens sapiens. Sembrava dunque individuata la caratteristica anatomica che distingueva evolutivamente il sapiens dal suo cugino più prossimo, il Neanderthal.

La teoria di Lieberman si fonda sulla comparazione della struttura ossea dell'uomo moderno con quella dei fossili di ominidi, confrontando in particolare la presenza, la forma e la posizione dell'osso ioide. Tale osso, infatti, svolge un ruolo preciso durante la fonazione; si abbassa consentendo una maggiore modulabilità dei movimenti laringali. Nell'Homo sapiens sapiens l'osso ioide si troverebbe in una posizione più alta rispetto a quella degli altri ominidi e avrebbe una forma differente che permette un migliore attacco dei tendini che consentono il suo movimento. La comparsa dell'osso ioide con le caratteristiche specifiche dell'uomo anatomicamente moderno sarebbe fissata, in base alla datazione liebermaniana dei primi fossili di sapiens sapiens, appunto intorno ai

130.000 anni. L'individuazione dei tratti anatomici per la fonazione specifici della specie umana garantiva, così, l'unicità della funzione linguistica e la separazione Lalle altre specie animali.

In realtà l'ipotesi «speech is special», con il riferimento alla configurazione soralaringale tipicamente umana, è stata sottoposta a critiche derivanti sia dagli studi etologici (discusse supra, nel § 1.2), sia da quelli paleoantropologici. La zatazione della comparsa dell'osso ioide si è rivelata in parte imprecisa. Ricerche zaleoantropologiche successive hanno dimostrato come la ricostruzione evolutiva dei tratti morfologici periferici del linguaggio (il tratto vocale sopralaringeo. cer l'appunto) approntata da Lieberman non tenesse conto di alcuni elementi volutivi fondamentali. Secondo Bradshaw [1997], ad esempio, è improbabile. ine la struttura articolatoria sia comparsa all'improvviso nel sapiens: al suo primo Epparire essa sarà stata molto simile a quella posseduta dagli altri ominidi per la comunicazione intraspecifica. A conferma di tale ipotesi sarebbe la scoperta da parte di Arensburg et al. [1989] della presenza di un osso ioide di Neanderthal trovato a Kebara, quasi identico a quello delle forme moderne. Diversi altri studi sui neanderthaliani hanno avanzato la tesi di una loro possibilità «tecnica» zi emettere articolazioni vocali [Duchin 1990; Houghton 1993; Heim, Boë Abry 20021. Questo dimostrerebbe che almeno un'altra branca del genere Homo avrebbe posseduto in parte le strutture tecniche per parlare [Annett 302: Bradshaw 1997]. Tale ritrovamento ha consentito di rivedere il quadro fella datazione delle strutture morfologiche dell'uomo.

a ricostruzione delle strutture anatomiche dall'analisi dei dati fossili risulta particolarmente complessa. Come è evidente dalle ricerche degli ultimi venti anni, infatti, la metodologia adottata per inferire dai resti fossili la morfologia dei tessuti molli, che non fossilizzano, è varia. Diverse ricerche hanno dimostrato la correlazione tra il passaggio al bipedismo, il cambiamento della struttura del cranio con il conseguente ingrandimento del volume del cervello, e la formazione della configurazione sopralaringale dell'uomo anatomicamente moderno [Lieperman, Ross e Ravosa 2000 l. Dall'analisi di alcuni elementi strutturali come la flessione della base del cranio, la morfologia dell'osso ioide, le dimensioni del canale ipoglossale e del canale toracico in tali fossili, dunque, sarebbe possibile dedurre la forma del tratto vocale, la posizione della laringe, il grado di controllo espiratorio e articolatorio. Tutti elementi che differenzierebbero gli ominidi dai capiens sapiens. In particolare l'angolazione della base del cranio è ritenuta il momento chiave dello sviluppo cranio-facciale, in quanto determina le relazioni spaziali fra le tre fosse endocraniche. In sostanza sembra che l'angolazione della base del cranio sia correlata al la variazione del volume del cervello [Ross e Ravosa 1993; Spoor 1997] e influenzi le dimensioni del tratto vocale [Lieberman et al. 1972; Laitman e Crelin 1976; Laitman, Heimbuch e Crelin 1978; 1979; 1982; Lieberman et al. 1992]

Lieberman e Crelin [1971] e Lieberman, Crelin e Klatt [1972] sostengono, ad esempio, che la flessione della base esterna del cranio abbia contribuito alla discesa della laringe. Tale flessione, infatti, determina una riorganizzazione dei muscoli e dei legamenti che gestiscono i movimenti ioidali. In questa nuova organizzazione lo spazio tra la parte terminale della lingua e la colonna vertebrale risulta ridotto, accorciando così le dimensioni anteroposteriori della faringe e obbligando la laringe a posizionarsi in basso. La nuova organizzazione muscolo-craniale, dunque, provocherebbe l'abbassamento della laringe a causa di costrizioni di tipo spaziale [Lieberman e Crelin 1971; Laitman e Crelin 1976; Laitman, Heimbuch e Crelin 1979; Laitman e Heimbuch 1982; Lieberman 1984]. Sebbene i meccanismi di flessione postnatale della base del cranio siano probabilmente unici del genere Homo differenziandosi significativamente da quelli dei primati, l'ipotesi di una determinazione diretta della morfologia del tratto vocale è stata criticata.

La flessione della base del cranio dal punto di vista ontogenetico, infatti, si completa molto presto nello sviluppo infantile (nei primi due anni di età), mentre la discesa della laringe e dell'osso ioide avviene solo dopo la fine della pubertà. Sembra, inoltre, che la posizione dell'osso ioide e della laringe sia connessa alle dimensioni e alla struttura della mascella e della mandibola che si sviluppano indipendentemente dalla flessione della base del cranio durante l'ontogenesi. Lo scheletro joideo svolge una funzione evolutiva fondamentale, cioè funge da base ossea alla muscolatura che fa abbassare la mascella e muovere la lingua [Leroi-Gourhan 1964]. Per tale motivo si è ipotizzata la sua insorgenza nel momento in cui viene a instaurarsi la respirazione aerea. Tali dati concorderebbero con le costrizioni fisiche derivanti dalla postura bipede [Falk 1975].

La ricerca di evidenze indirette relative all'origine del linguaggio ha spinto i ricercatori a indagare anche sulla configurazione anatomica cerebrale degli ominidi. L'aumento del volume cerebrale è stato a lungo considerato uno dei marcatori indiretti dei cambiamenti avvenuti lungo la linea evolutiva che ha condotto al sapiens sapiens. Tale indice, però, è molto controverso.

Una delle critiche principali addotte riguarda la mancanza di informazioni sul volume minimo indispensabile per il supporto della funzione linguistica: sebbene la crescita del volume cerebrale dalle austrolopitecine (400-500 ml [Wood 1992]) al sapiens sapiens (1200-1700 ml [Stringer 1992]) sia evidente dalle dimensioni del cranio, non è possibile dedurre informazioni relative alle specifiche capacità cognitive.

Per tale ragione l'indagine si è focalizzata sulla paleoneurologia, cioè sull'individuazione di strutture cerebrali che consentono l'instanziazione di funzioni superiori negli ominidi. Wilkins e Wakefield [1995], ad esempio, hanno cercato di dimostrare l'insorgenza di alcune strutture cerebrali negli ominidi che hanno consentito lo sviluppo di funzioni cognitive, riadattate in seguito dal linguaggio. Quest'ultimo, infatti, sarebbe potuto emergere solo dopo il raggiungimento di una configurazione cerebrale appropriata. Secondo tale ipotesi, durante il Pleistocene si è verificata una contemporanea espansione della neocorteccia frontale e parietale nella linea degli ominidi. Tale espansione è sia ricavabile dalle ricostruzioni dei calchi delle pareti craniche interne degli ominidi (dall'habilis in poi), sia deducibile dai cambiamenti adattativi associati con le manipolazioni di oggetti. I cambiamenti nella neocorteccia avrebbero prodotto una configurazione neurale tipica: la giunzione dei lobi parietale.

occipitale e temporale (POT) che include l'area di Wernicke. Tale giunzione risulta essenziale per la rappresentazione multimodale delle percezioni sensoriali del mondo esterno.

In sostanza i dati visivi, uditivi e somatosensoriali vengono prima processati in maniera unimodale nelle singole aree di associazione della corteccia. Le rappresentazioni unimodali convergono in coppie (uditivo-visive, uditivo-somato-estetiche e visivo-somato-estetiche) e infine vengono trasferite alla POT che le integra in un'unica rappresentazione amodale. La POT sarebbe «l'area di associazione delle aree di associazione» [ibidem, 163]. Questa «superarea» di associazione è connessa, tramite il maggiore fascicolo di fibre neurali mielinizzate che collegano la corteccia parietale a quella frontale, all'area di Broca in particolare, consentendo un passaggio molto rapido dell'informazione tra le due zone. Tale regione. tradizionalmente riconosciuta come l'area della produzione linguistica, secondo l'ipotesi POT svolge una funzione più generale, ma ugualmente importante per il linguaggio. L'area di Broca, infatti, avrebbe ereditato la sua organizzazione funzionale dall'area di associazione motoria da cui deriva evolutivamente. Essa sarebbe specializzata nella strutturazione gerarchica dell'informazione in un formato compatibile con la sua sequenza temporale, anche durante l'elaborazione dell'informazione linguistica. Il ruolo di «strutturatore gerarchico-temporale» dell'area di Broca, infatti, non agirebbe solo per il linguaggio, ma per qualsiasi rappresentazione amodale del mondo esterno determinando, così, rappresentazioni semantiche strutturate3.

Secondo Wilkins, infatti, una tale configurazione cerebrale si è fissata all'interno della popolazione per pressioni selettive non connesse alle capacità comunicative, ma alle abilità manipolative necessarie per la costruzione e l'uso degli attrezzi. Tali abilità, richiedendo un forte controllo delle mani e del feedback somatosensoriale, e una minuziosa coordinazione con le informazioni visive, impegnano molto le cortece motoria, somatosensoriale e visiva. La coordinazione motorio-somatosensoriale, nonostante queste zone della corteccia siano distanti fisicamente, viene garantita dal fascicolo di fibre che connette l'area sensoria a quella motoria.

Evidenze paleoneurologiche di tale ipotesi sarebbero riscontrabili nella confor-

Secondo Humphrey [1979] gli esseri umani possiedono la capacità di costruire rapprestataoini amodali, cioè di formaris concetti astrati delle struazioni percettive cui sono esposti, già a partire dai 3 mesi di vita. Tale capacità viene de finita emappatura metaforica, in riferimento alla possibilità di attribuire significati generali ai fatti esterni, del mondo, indipendentemente dalla modalità percettiva in cui vengono processati. È importante notare conceta de abilità sia assente nei primati, capaci di svolgere compiti che implicano daborazioni cross-modali (ad esempio il riconoscimento di un oggetto presentato prima nella modalità tattle e poi visiva), ma incapaci di astrazioni amodali (fr. Ettilinger 1981). La configurazione anatomica determinata dalla POT e dall'area di Broca, risulterebbe fondamentale per la furnicione linguistica che necessità di rappresentazioni concettuali del mondo esterno la ostanza, per poter essere processate linguisticamente, le percezioni del mondo esterno lo sostanza, per poter e processate linguisticamente, le percezioni del mondo esterno devono essere 2.22, li nati modo le propresentazioni amodali strutturate gerarchamente dall'area di Broca costituirebbero la struttura concettuale del linguaggio, il livello profondo della rappresentazione concettuale del linguaggio, il livello profondo della rappresentazione concettuale del linguaggio.

mazione dei solchi dell'Homo habilis ricostruiti attraverso i calchi della calotta cranica che dimostrerebbero la presenza della POT e dell'area di Broca. Inoltre anche i dati archeologici corroborerebbero la ricostruzione paleoneurologica: i primi ritrovamenti di utensili sarebbero riconducibili all'habilis che, dunque, doveva possedere capacità manipolative e le aree cerebrali che le consentivano. La configurazione della POT e dell'area di Broca, in sostanza, sarebbe stata selezionata non per scopi comunicativi, ma per la manipolazione fine degli utensili. Tale configurazione specifica del genere Homo4 sarebbe quella «appropriata» per l'instaurazione del linguaggio. La struttura anatomica cerebrale attuale deriverebbe dalle selezioni operate sul «materiale grezzo» convertito in seguito in una funzione adattabile a quella struttura.

I dati paleoneurologici, dunque, confermerebbero il ruolo attualmente discusso dell'area di Broca come zona dedicata all'organizzazione gerarchica delle informazioni (per la discussione sulle nuove teorie relative al ruolo svolto dall'area di Broca, cfr. cap. VI, §§ 2 ss.), indispensabile per l'attribuzione semantica delle rappresentazioni amodali del mondo esterno.

2.2. Tecnica e linguaggio

Molte teorie hanno connesso le capacità manipolative con la differenziazione del genere Homo dalla linea dei primati non umani e con l'insorgere di capacità cognitive indispensabili per il linguaggio [Corballis 2002].

Di recente, inoltre, si è affermata una branca di studi – l'archeologia cognitiva (cfr. cap. I. § 3.4) - che cerca di ricostruire le capacità cognitive degli ominidi e i cambiamenti che esse hanno subito nel corso dell'evoluzione verso l'uomo anatomicamente moderno dalla forma degli strumenti da loro utilizzati.

Le abilità di costruzione degli utensili, via via più complesse e sofisticate, vengono impiegate come indice dell'incremento delle capacità cognitive. Ovviamente è implicita in tale prospettiva la necessità di una struttura morfologica adatta alla manipolazione degli oggetti.

I primati non umani, ad esempio, non sono in grado di creare utensili finemente lavorati a causa di limitazioni anatomiche alla mobilità delle articolazioni interessate che sono «progettate», adatte, per la locomozione arborea e quadrupede. I polsi, in particolare, sembrano poco adatti alla manipolazione e alla prensione di piccoli oggetti per la lavorazione e ciò a causa del loro adattamento per la locomozione sulle nocche⁵. Le manifestazioni di tecnicismo degli scimpanzé, inoltre, non possono essere interpretate come esempi di capacità creative simili

Il cervello dei pongidi non presenta l'allargamento della zona parietale (evidente nella prominenza del solco lunato) e ciò impedisce la conseguente organizzazione della zona occipitale (POT incluso) [Wilkins e Wakefield 1995].

I polsi dei primati sono «bloccati» nella rotazione per evitarne l'iperestensione, dannosa durante la locomozione quadrumane [Ambrose 2001].

a quelle umane (spesso, ad esempio l'attrezzo utilizzato per svolgere un compito viene abbandonato e la tecnica appresa, anche se la più efficace, non viene applicata in situazioni successive [cfr. Tomasello 1999], o come dimostrazione della presenza di comportamenti «umani» già negli altri animali. Tale tipo di approccio, infatti, rivela una posizione antropocentrica nell'interpretazione dei comportamenti animali, comunque riconducibili a forme di comportamento umano. Le specificità comportamentali, come visto nel § 1.2, variano di significato e di controllo filogenetico in base al gradiente di steno-euritopicità della specie presa in considerazione.

Una tradizione di studi inaugurata da Leroi-Gourhan sostiene che la correlazione tra abilità manuali e capacità linguistica non passa attraverso la formazione di strutture cognitive in seguito riadattate, ma è diretta. In questa relazione gioca un ruolo fondamentale il passaggio dal quadrupedismo al bipedismo. Tale passaggio, infatti, segna la liberazione degli arti anteriori dalla locomozione e la loro funzionalizzazione per il miglioramento della nutrizione, delle attività di relazione, della mobilità e della manualità fine. «Fin dall'origine, la colonna vertebrale, la faccia e la mano sono indissolubilmente legate» [Leroi-Gourhan 1964, 27]. Gli studi di paleoantropologia e paleoneurologia dimostrerebbero, infatti, che le specie in cui è presente una maggiore liberazione della mano dalla locomozione sono anche quelle in cui il volume del cranio risulta maggiore. Essendo la «liberazione della mano e [la] riduzione degli sforzi della volta cranica [...] due termini della stessa equazione meccanica» [ibidem, 71], una volta raggiunta la posizione eretta e liberati gli arti anteriori dai compiti locomotori, anche la struttura del cranio viene liberata dalle costrizioni fisiche e ciò a favore di un aumento del ventaglio corticale, cioè del corrispondente cranico dell'area parietale.

Il limite evolutivo raggiungibile per le dimensioni del cervello, infatti, corrisponde a tutto lo spazio meccanicamente disponibile. Le specie in cui tale spazio viene occupato completamente dalla massa cerebrale entrano nella loro fase di compiutezza (si consideri il caso dei Mammiferi erbivori in cui è evidentemente raggiunto il limite di «affrancamento meccanico»), mentre le specie la cui struttura corporea è rimasta «disponibile» a modificazioni adattative e dunque a cambiamenti fisico-genetici, cioè quei gruppi che mostravano dispositivi corporei meno specializzati, sono quelli che hanno dato origine alle forme cerebralmente più evolute. È importante notare che la ricostruzione paleoantropologica fornita da Leroi-Gourhan sulle modificazioni anatomo-cerebrali che hanno consentito lo sviluppo della zona parietale negli ominidi rispetto ai pongidi, con incrementi di grado via via maggiore, concorda con l'inotesi POT. La conseguenza diretta del fatto che il cranio degli ominidi poggi su una colonna vertebrale diritta, infatti, risiede nell'isolamento meccanico della faccia rispetto alla parte posteriore del cranio e l'aumento sensibile della volta cranica nella regione fronto-temporoparietale media.

Da un punto di vista neurale, inoltre, le aree deputate al controllo somatosensoriale della mano e del viso risultano limitrofe, e questo deriverebbe dalla connessione evolutiva tra la liberazione degli arti anteriori con la conseguente specializzazione per compiti di prensione fine, e gli organi anteriori della faccia [ibidem].

Il legame tra tecnica e linguaggio da un punto di vista evolutivo viene rinsaldato anche dal fatto che l'area di Broca, coinvolta nel controllo motorio oro-facciale (anche se non direttamente responsabile, cfr. cap. VI, § 2.2.1-3), derivi con molta probabilità dall'area per il controllo motorio manuale fine [Greenfield 1991]. Inoltre, secondo Leroi-Gourhan [1964], esiste la possibilità di un «linguaggio» «a partire dal momento in cui la preistoria ci tramanda degli utensili, perché utensile e linguaggio sono collegati neurologicamente e perché l'uno non è dissociabile dall'altro nella struttura sociale dell'umanità» [ibidem, 136]. Così, in misura direttamente proporzionale con la loro abilità manifatturiera, forme di «linguaggio» erano presenti già negli ominidi ad un livello molto basso, ma superiore al livello dei richiami vocalici. Sino all'apertura completa del ventaglio corticale, avvenuta col superamento dello sbarramento prefontale nell'Homo sapiens, la tecnica, tuttavia, traduce fedelmente la condizione biologica. Se la storia dell'evoluzione dell'uomo avesse proceduto secondo tali ritmi, la curva della tecnica avrebbe seguito un andamento regolare che avrebbe ritardato l'industria manifatturiera più avanzata (l'acheuleana) di 400,000 anni circa. Le modificazioni neurali del ventaglio corticale e le conseguenze manuali associate, invece, hanno interrotto il legame della tecnica al progresso cellulare [ibidem]. Il successivo superamento del «cervello tecnico», grazie alla gestione delle informazioni sensoriali tramite le aree di associazione, ha prodotto la specializzazione del cervello umano anziché verso la tecnica pura, verso una capacità di generalizzazione anatomica e funzionale.

Dalla comparazione delle tecniche animali con quelle umane, infatti, risulta chiara una differenza di specializzazione e di controllo. Parecchi comportamenti animali sembrano implicare la conoscenza di una tecnica molto complicata per la loro esecuzione

In realtà studi etologici di deprivazione di esperienza hanno dimostrato come spesso, dietro comportamenti complessi si nasconda la più assoluta inconsapevolezza del fine dell'azione. Il ragno Cupiennus salei, ad esempio, ha a disposizione circa 6.400 movimenti di tessitura per realizzare la sua tela e per poi deporvi le uova. Se viene appositamente disturbato attraverso i riflettori delle telecamere che alzano la temperatura e seccano il liquido normalmente secreto dall'animale, il ragno, pur restando «a secco», continuerà i suoi movimenti di tessitura senza filo. Quando deporrà le uova le farà cadere, quindi, al suolo. Al termine chiuderà il bozzolo come se avesse compiuto l'operazione con successo [Eibl-Eibesfeldt 1987]

La consapevolezza delle teleonomia del comportamento deriva dall'apprendimento di una tecnica specifica [cfr. Lo Piparo 2003]. Esempi di tale consapevolezza possono essere considerati tutti quei comportamenti che richiedono insegnamenti genitoriali dedicati e che comunque non si sviluppano se non in seguito ad addestramenti specifici. In questo caso siamo di fronte a un comportamento euritopico; il primo caso, invece rientra nella programmazione filogenetica del comportamento.

Nel caso dell'uomo, le abilità tecniche da apprendere riguardano non solo le funzioni cognitive superiori, ma già la deambulazione (si pensi alla difficoltà di coordinazione motoria sugli arti inferiori degli enfants sauvages, cfr. cap. VI, § 1.1 per la discussione), così come la capacità articolatoria fine e non ultimo il linguaggio, che, come ogni tenciae acutiropica», necessita di apprendimento, della sperimentazione per prove ed errori delle nuove competenze e del mantenimento continuo dell'esercizio, che in caso di mancato apprendimento o di eventi traumatici, può venire meno.

3. LA MENTE BIOLOGICA E LA FUNZIONE ADATTATIVA DEL LINGUAGGIO

I dati relativi alla componente morfologica, alle specificità genetiche ed etologiche, ai processi che hanno condotto alle strutture anatomiche centrali e periferiche del linguaggio mostrano un quadro d'insieme problematico sia in relazione alla ricostruzione evolutiva sia in relazione agli elementi che vengono considerati determinanti per la definizione dell'Homo sappiens sappiens come specie.

La problematicità della ricostruzione evolutiva è evidente nelle possibili spiegazioni dei reperti fossili. Non sempre i dati derivanti dai resti fossili, infatti, sono interpretabili allo stesso modo e questo a causa dello stato in cui si trovano quando vengono rinvenuti. Spesso, ad esempio, le strutture anatomiche vengono ricostruite da frammenti di scheletri. Ovviamente vengono impiegati criteri standard diricostruzione, ma Tattività di recupero a volte risulua particolarmente difficile. La situazione si complica quando dai resti fossili si tenta di comprendere la possibile anatomia delle parti molli contenute al loro interno. È questo uno dei principali limiti della palecoantropologia.

Il secondo elemento problematico riguarda il livello a cui si applica l'analisi evolutiva. Da Darwini in poi, le teorie sull'evoluzione dell'uomo hanno indagato aspetti vari della morfologia e del comportamento umano, spesso mescolandone i campi di applicazione e le spiegazioni derivanti. Uno degli elementi che ha generato e tutti ora genera confusione nel dibattito sull'evoluzione del sapiens sapiens, a nostro avviso, è proprio il collegamento tra mutamenti delle strutture e cambiamenti nelle funzioni associate. Sembra, infatti, che la maggior parte delle teorie linguistiche che hanno affrontato il tema evolutivo si sia focalizzata su quali funzioni abbiano assolto il compito di «precedente evolutivos del finguaggio. In sostanza, sembra che il collegamento tra la base anatomica e la funzione correlata sia scontato nel caso delle teorie innatiste, secondo cui il linguaggio deriva da cambiamenti qualitativi, oppure sia gestito dalla selezione naturale nel caso delle teorie selezioniste, secondo cui il linguaggio deriva da cambiamenti qualitativi, oppure sia gestito dalla selezione naturale nel caso delle teorie selezioniste, secondo cui il linguaggio è stato accolto positivamente in quanto ha apportato miglioramenti alle preesistenti capacità comunicative.

Dai dati sin qui analizzati, invece, sembra che la relazione evolutiva tra struttura e funzione non possa venir considerata implicita o scontata, come se nella strut-

tura al suo primo insorgere sia già contenuta la funzione che andrà a svolgere. Una tale dipendenza diretta sarebbe vicina alla prospettiva localizzazionista che assegnava ogni capacità umana a una data area cerebrale. In un certo senso, la mancata separazione (almeno come cautela metodologica) tra evoluzione della struttura e instanziazione della funzione potrebbe essere interpretata come una «frenologia evolutiva», un'attribuzione precisa alle strutture appena evolute del controllo di funzioni cognitive superiori attuali.

La struttura biologica della mente, determinante per l'instanziazione della funzione linguistica, invece, sembra essersi evoluta indipendentemente sotto la pressione di forze selettive che hanno agito su vantaggi non direttamente dipendenti dalle nuove funzioni cognitive. Anche i dati della paleoantropologia e della paleoneurologia hanno chiarito la necessità della formazione di una configurazione anatomica e cerebrale precisa per lo sviluppo di capacità cognitive superiori connesse in un primo tempo alle abilità tecniche e in seguito alle capacità cognitive superiori, tra cui il linguaggio.

3.1. Teorie linguistico-evolutive

Le teorie che si sono occupate di fornire una spiegazione dell'evoluzione delle capacità linguistiche si collocano all'interno di due sistemi di interpretazione dei processi evolutivi: quello selezionista e quello innatista. Le prime sostengono che l'importanza delle capacità linguistiche per la definizione della specie umana è spiegabile solo se si ipotizza una selezione naturale positiva di tali capacità. indispensabili per la sopravvivenza e il miglioramento dell'adattatività del saniens sapiens. Le teorie linguistiche innatiste, invece, sostengono l'impossibilità che una funzione così complessa come il linguaggio possa essersi affermata nella specie umana tramite i meccanismi «probabilistici» del caso e la selezione naturale. È probabile, invece, che il linguaggio sia il prodotto di cambiamenti qualitativi che hanno reso «diverso», unico, l'uomo,

Un esempio molto noto può essere fornito dall'approccio chomskyano all'evoluzione del linguaggio. In breve, Chomsky [1975] sostiene l'innatezza delle capacità mentali per il linguaggio e la presenza nell'essere umano di uno specifico meccanismo di acquisizione (LAD, Language Acquisition Device) che rende possibile l'acquisizione di una qualsiasi lingua cui si viene esposti. Ogni unità delle lingue naturali viene generata dall'applicazione di un set finito di regole che costituiscono la cosiddetta Grammatica Generativa; inoltre tutte le lingue condividono delle strutture logiche profonde e ciò renderebbe evidente l'innatezza della nostra capacità linguistica (cfr. cap. III. § 2.3). Sebbene tratti di questioni evolutive, secondo Chomsky la linguistica non deve occuparsi di come si siano evolute tali funzioni innate, né tanto meno deve studiare l'apparato morfologico su cui sono stanziate. L'unico interesse per il linguista sarebbe, dunque, la struttura sintattica ricorsiva del discorso. Inoltre l'origine e la presenza della capacità linguistica, innata e universale, non può venire spiegata dalla selezione naturale (come sostenuto fino al 1988). In sostanza veniva ripresa in vesti più moderne la posizione cartesiana secondo la quale l'uomo, con tutte le sue capacità superiori, è il risultato di un salto qualitativo che lo ha reso completamente diverso dagli altri animali.

Questa posizione estrema è stata ripresa e modificata nell'articolo che Chomsky ha redatto insieme agli etologi Hause re Fitch [2002] in cui viene affermato che la facoltà del linguaggio è suddivisibile in una facoltà linguistica in senso lato (FLR: faculty of language in broad sense) e una in senso stretto (FLN: faculty of language in narrow sense) (cfr. cap. III, § 2.5). La FLB include il sistema senso-motorio. il sistema intenzionale e concettuale e i meccanismi computazionali di ricorsività. che determinano la capacità di generare un sistema infinito di enunciati a partire da un sistema finito di elementi. La FLN include solo il sistema ricorsivo-computazionale ed è l'unico elemento della facoltà del linguaggio esclusivamente umano. Per quanto riguarda il possesso dei due tipi di facoltà del linguaggio è importante sottolineare come Chomsky ritenga specie-specifico dell'uomo solo la capacità linguistico-computazionale pura, considerando sia il tratto vocale sopralaringeo sia le aree cerebrali deputate al linguaggio elementi non caratterizzanti. per l'acquisizione linguistica nella specie umana. L'affermazione dell'esclusività umana della ricorsione sintattica è motivata dal recente approccio chomskyano alla sintassi, il Programmma Minimalista, che enfatizza il carattere ricorsivo del linguaggio come unicamente umano e sminuisce tutte le altre caratteristiche che potrebbero contribuire a descrivere il linguaggio come tale [Pinker e Jackendoff 2005] (per una discussione cfr. cap. III, § 2.4).

In seguito altri autori hanno contestato tale posizione, sostenendo che il linguaggio mostra delle caratteristiche funzionali troppo complesse per ipotizzare che esso sia comparso senza uno specifico scopo funzionale-adattativo [cfr. Pinker. 1994]. Bickerton [1990], ad esempio, propone una teoria del linguaggio basata sul concetto di exaptation, cioè ri-adattamento per funzioni diverse. Tale teoria prevede due stadi: nel primo sarebbe emerso una sorta di «protolinguaggio» caratterizzato dalla mancanza di organizzazione sintattica delle parole che praticamente fungevano da etichette per esprimere concetti. Nel secondo stadio si sarebbe evoluto un vero e proprio linguaggio con un sistema di regole sintattiche via via più complesso. Il protolinguaggio sarebbe emerso grazie alla pressione selettiva determinata dalla necessità di trasmettere informazioni riguardo alla posizione del cibo alla presenza di potenziali predatori o rischi da fronteggiare. L'antenato evolutivo del linguaggio umano non sarebbe costituito, però, dai precedenti sistemi di comunicazione animale, ma dai precedenti sistemi di rappresentazione concettuale. Lo sviluppo della sintassi si sarebbe verificato in seguito come conseguenza dello stabilirsi all'interno di quei gruppi di ominidi che possedevano già un protolinguaggio, dell'altruismo reciproco che consente di chiarire «chi ha fatto cosa a chi», identificando e rifiutando gli individui che mentono, rinforzando le alleanze con gli altri individui.

Negli ultimi anni si sono accumulate parecchie teorie che hanno tentato di fornire prove dell'azione della selezione naturale nell'evoluzione del linguaggio. Evidenze di tale azione derivano, secondo le teorie selezioniste, in parte dagli studi paleoantropologici sui processi di ominizzazione (cfr. supra, § 2.1) e in parte dai dati genetici sulle versioni evolutive precedenti (presenti, dunque, in altri animali non umani) di geni implicati nell'evoluzione filogenetica e nello sviluppo ontogenetico del linguaggio (cfr. supra, § 1.1.1).

L'adozione della prospettiva darwiniana nell'indagine linguistica ha condotto a numerose ipotesi che affermano la possibilità di un vantaggio adattativo che ha permesso l'evoluzione del linguaggio tramite la selezione naturale. Deacon [1997]. ad esempio, sostiene che la specie umana sia una «specie simbolica», in quanto caratterizzata dall'uso dello strumento linguistico nelle relazioni quotidiane. Il linguaggio, però, non sarebbe solo un semplice strumento di comunicazione, ma l'espressione esterna di una modalità di pensiero particolare attraverso la quale l'uomo rappresenta simbolicamente il mondo. La comunicazione simbolica era una risposta a un problema riproduttivo che soltanto l'uso dei simboli poteva risolvere: la regolazione delle relazioni riproduttive tra i primi ominidi.

Secondo Deacon [ibidem] i nostri antenati avrebbero tratto vantaggio da una strategia di sussistenza come quella basata sulla caccia e sul raccolto solo se avessero potuto regolare il tipo di rapporto riproduttivo tra gli uomini e le donne del gruppo. In sostanza la comunicazione simbolica sarebbe stata selezionata perché adattativa in quanto consentiva di stabilire delle norme precise per la gestione delle donne e dunque della progenie. In una società nomade, come quella dei cacciatori-raccoglitori, avere una compagna fissa e il controllo sulla sua ingravidazione poteva risultare vantaggioso per una migliore gestione delle risorse alimentari e per garantire la propria continuità genetica, la propria fitness. La comunicazione simbolica fu di seguito migliorata e gradualmente applicata non solo alla soluzione di problemi relazionali-riproduttivi all'interno del gruppo ma anche ad altri scopi. I primi ominidi la utilizzarono, infatti, in più ambiti a causa dei molti vantaggi che essa forniva nelle situazioni concrete sia a livello individuale che collettivo: dalla comunicazione madre-figlio alle strategie di procacciamento del cibo, dalle abilità nel costruire strumenti alla guerra e alla difesa collettiva, infine anche alla condivisione delle esperienze passate. In sostanza la tesi di Deacon suppone che l'adattivittà della comunicazione simbolica e. dunque. del linguaggio, sia dovuta alla possibilità che essa offre di regolare i rapporti di gruppo, in particolare la gestione sociale della riproduzione. I miglioramenti apportati dall'uso del linguaggio in tutti gli altri casi sarebbero una conseguenza del successivo adattamento di esso alle varie situazioni concrete in cui la comunicazione simbolica può svolgere un ruolo.

In parte anche Dunbar [1997] collega lo sviluppo della facoltà linguistica alla vita sociale suggerendo che interazioni sociali complesse nei primati richiedono un cervello sviluppato, più grande rispetto alle specie filogeneticamente precedenti, in quanto gli scambi sociali implicano un numero veramente elevato di elementi da ricordare. Gli individui, infatti, hanno bisogno di ricordare «chi ha fatto cosa a chi» e di valutare quanto sia forte un'alleanza in un determinato momento. Tali relazioni sono molto complesse in quanto i primati stabiliscono relazioni sociali esclusivamente di tipo personale. I primati sono animali sociali che vivono in gruppi la cui grandezza è proporzionale al numero massimo di

individui con cui un primate può intrattenere relazioni sociali tramite il contatto personale. Le relazioni complesse sono, infatti, mantenute tramite il grooming (lo spulciamento della pelliccia che un primate effettua su un altro). In altre parole la funzione reale del grooming è quella di mantenere coeso il gruppo, consentendo di monitorare continuamente la condizione delle relazioni sociali. Sembra, infatti, che la quantità di tempo dedicata al grooming dipende dalla grandezza del gruppo: maggiore è il numero dei componenti maggiore sarà il tempo dedicato a tale attività sociale all'interno dei sottogruppi. Ciò dovrebbe diminuire lo stress sociale e aumentare l'efficienza nella protezione degli individui dagli attacchi esterni.

Secondo Dunbar [bitdem] i nostri antenati ominidi dovevano fronteggiare le continue e crescenti predazioni nei loro confronti soprattutto da parte di altri animali che viveano le zone ricche di vegetazione. La necessità di difendersi dagli attacchi ha spinto gli ominidi ad adottare come strategia per la sopravivenza lorganizzazione di gruppi più numerosi che consentivano di fronteggiare con maggiore successo i predatori. Ma l'incremento numerico dei gruppi richiedeva una quantità di tempo eccessivamente elevato da dedicare alla cura e al monitoraggio sociale tramite il grooming. Ciò ha favorito la diffesione di un sistema di condivisione e di gestione delle relazioni sociali che consentiva di rafforzarle e mantenerle contemporaneamente con più individui: il linguaggio. La funzione del linguaggio consisterebbe, in sostanza, nel gostip, considerato una forma molto efficiente di grooming poiché consente di comunicare con più di una persona alla volta riguardo la relazione di certe persone con altre persone.

Nonostante le differenze di impostazione, dunque, le teorie linguistico-evolutive concordano su un fatto: il linguaggio si è evoluto o dal miglioramento di funzioni comunicative già presenti o tramite l'affermazione di funzioni qualitativamente superiori.

3.2. Semantica e adattatività

Le teorie linguistico-evolutive, come descritto, si basano sulla convinzione che le capacità linguistiche derivino da capacità precedenti che hanno modificato rendendole maggiormente adattative o ri-adattandole a funzioni nuove. Che il linguaggio sia stato selezionato positivamente perché migliorava la gestione delle relazioni riproduttive, o perché consentiva una maggiore organizzazione e coesione sociale, o ancora perché si mostrava come un mezzo potentissimo per comunicare la posizione delle riserve di cibo piuttosto che per avvertire i conspecifici di un pericolo imminente, ciò che sembra chiaro è la sua funzione adattativa. Il lipo di interpretazione fornito da tali teorie, dunque, considera il linguaggio alla stessa stregua delle strutture anatomiche: un elemento mutato che, per affermarsi a livello di popolazione, deve garantire vantaggi tali da differenziare una data specie dalle altre.

Come anticipato nel § 3, la confusione tra evoluzione delle strutture e delle

funzioni che esse consentono determina un quadro poco chiaro delle tappe che hanno condotto alle capacità cognitive superiori e l'impossibilità di considerarne le reali caratteristiche. Evidenze paleoantropologiche impongono tale distinzione. È, infatti, ormai noto che, sebbene l'Homo sapiens sapiens sia comparso nella scena evolutiva circa 120-200.000 anni fa, bisogna attendere circa 70.000 anni prima di poter intravedere le prime manifestazioni culturali.

La lezione di Leroi-Gourhan [1964] in questo è molto chiara: nonostante i primi sapiens sapiens fossero anatomicamente come l'uomo moderno, non si conservano resti che testimonino un'attività simbolica, come le pratiche di inumazione dei morti o le pitture rupestri. Sembra dunque, che a fronte di mutamenti morfologici non si verifichino cambiamenti nelle funzioni precedenti. È probabile, invece, che le strutture anatomiche siano state selezionate positivamente non per le funzioni che oggi consentono, ma per altri vantaggi immediati. Il cervello umano, così, potrebbe essersi ingrandito e strutturato nel modo attuale sia grazie alla liberazione dalle costrizioni fisico-meccaniche, sia per assolvere alle funzioni indispensabili alla sopravvivenza degli ominidi in date condizioni ambientali. Come sia avvenuta tale selezione, come si sia passati a funzioni cognitive diverse da quelle per cui le strutture anatomiche sono state selezionate, e infine cosa abbia determinato l'accelerazione delle funzioni cognitive superiori non è ancora stato chiarito.

Quello che è certo è che la «modernità» anatomica e quella cognitiva non sono concomitanti e risultano evolutivamente separate. In sostanza la speciazione che 200.000 anni fa ha condotto all'Homo sapiens sapiens ha prodotto un insieme di correlati anatomici specifici, con una funzione diversa da quella attuale che deriverebbe da una riorganizzazione della struttura. Un esempio di tale meccanismo evolutivo può essere considerata la selezione positiva del tratto vocale sopralaringeo, che abbiamo già esaminato sotto il profilo della sua morfologia nel § 1.1. Laitman et al. [1978] sostengono, ad esempio, che la posizione bassa della laringe sia stata determinata da nuove esigenze respiratorie connesse ai climi secchi e caldi. Fitch [2002a] sostiene invece che lo svantaggio associato alla posizione bassa della laringe (il soffocamento per il passaggio di residui alimentare nel canale respiratorio) può essere stato superato solo da un vantaggio molto forte, come quello determinato dalla possibilità di produrre frequenze formantiche nettamente distinguibili indipendentemente dalla lunghezza della laringe. L'abbassamento della laringe, prima selezionato per scopi adattativi che incrementavano la fitness della specie (la laringe bassa permette di produrre suoni più gravi, maggiormente attrattivi), è stato rifunzionalizzato per l'articolazione linguistica. L'azione della selezione naturale, dunque, sembra agire più sull'adeguatezza immediata delle forme che sulle funzioni. Una volta che una struttura è selezionata positivamente la funzione che essa consente non può che essere positiva per l'adattamento della specie anzi può migliorare l'adattatività raggiunta tramite la struttura.

La separazione tra l'evoluzione della struttura e la funzione connessa concorda con la visione etologica e paleoantropologica dell'evoluzione. Sembra, infatti, che a consentire la mutazione delle strutture e l'instanziazione di funzioni nuove sia la mancanza di specializzazione delle strutture stesse: più sono specializzate per lo svolgimento di un compito, più è difficile che si evolvano in qualcosa di diverso strutturalmente e funzionalmente.

Se una mutazione occorre in strutture già specializzate, o provoca disfunzioni e viene eliminata dalla popolazione, o determina ulteriori specializzazioni. È per tale ragione che l'uomo può essere definito «specialista della non-specializzazione» (Lorenz 1959) (cfr. cap. N. J. 5. 1.). Secondo Leroi-Gourhan «per tutto di croso della sua evoluzione, a partire dai Rettili, l'uomo appare l'erede di quelle creature che sono s'uggite alla specializzazione anatomica» [1964, 141]. Questo loha reso contemporanemente capace di generalizzazioni illimitate rispetto agli altri animali non umani, consentendogli l'uso di mezzi anatomici quasi non specializzati, ma debole da un punto di vista adattativo: il prezzo pagato all'euritopicità delle funzioni e l'impossibilità di prescindere da acquisizioni specifiche.

È come se la specificità umana risiedesse all'esterno della determinazione biologica, condizione necessaria per la sua esistenza, ma non sufficiente per la definizione dell'essenza della specie umana. Ad un certo punto della sua evoluzione, l'uomo ha reso indipendenti dalla selezione naturale le funzioni che lo determinano affidandole a una sorta di selezione culturale che segue le leggi della sociogenesi, non più quelle della filogenesi e dell'ontogenesi (cap. VI, 5, 1:1).

Ciò non toglie che l'adattatività della struttura morfologica è quella che consente la sopravvivenza ontogenetica della specie umana; ma questa viene mediata tramite la costruzione simbolica delle esperienze quotidiane resa possibile dalla funzione linguistica: una funzione evolutasi non grazie a vantaggi evolutivi immediati, ma in quanto mezzo indispensabile per la costruzione della propria visione del mondo.

Linguistica cognitiva

A partire dalla metà del secolo scorso, gli scritti di Noam Chomsky hanno delineato un paradigma forte all'interno del quale inquadrare le relazioni tra fenomeni linguistici e processi cognitivi sottesi. Nel corso degli ultimi venti anni questo paradigma ha subito significativi ripensamenti, esono anche emersi approcci alternativi. Nel presente capitolo sono ricostruiti sia il paradigma chomskiano originario sia, soprattutto, le lineedi tendenza degli ultimi decenni. Quanto al primo, gli aspetti più salienti di esos sono: la centralità e autonomia della sintassi, intesa come livello di descrizione dei fenomeni linguistici, ma anche come ipotesi psicologica circa l'esistenza di un modulo cognitivo innato contenente una rappresentazione implicita delle regole sintattiche. Le tendenze degli ultimi decenni, fuori e dentro la scuola chomskiana, vannoverso un ridimensionamento del dominio autonomo della sintassi. Acquista una centralità inattesa il lessico, che in alcuni approcci diventa il vero motore dei fenomeni sintattici. Ma anche a semantica e pragmatica vengono assegnati ruoli più fondamentali.

1. DEFINIZIONE DEL CAMPO

L'espressione dinguistica cognitiva» si presta a due usi differenti, che in queste pagine saranno intrecciati, ma anche all'occorrenza distinti con cura. In un'accezione più ristretta essa designa una corrente di studi sviluppatasi a partire dall'esperienza teorica della «grammatica cognitiva», ossia da quel movimento che nella seconda metà degli ami Ottanta ha elaborato un proprio quadro teorico in esplicita contrapposizione e concorrenza con il paradigma chomskiano. La linguistica cognitiva in questa accezione ristretta ha una propria rivista di riferimento, «Cognitive Linguistics», una propria associazione, la International Cognitive Linguistics Association: e una data di nascita largamente accettata. l'anno 1987 nel quale vengono dati alle stampe Women, Fire, and Dangerous Things: What Categories Reveal about the Mind di George Lakoff, e Foundations of Cognitive Grammar di Ronald Langacker.

In un'accezione più ampia l'espressione «linguistica cognitiva» può essere sensatamente adoperata per indicare il complesso degli studi sul linguaggio che vertono sui fenomeni tradizionalmente descritti dalla linguistica (fonologia, morfologia, sintassi, semantica, pragmatica ecc.), ma con una specifica attenzione alla loro dimensione cognitiva. In altri termini, l'obiettivo della linguistica cognitiva in questa accezione ampia è identificare i processi mentali che rendono possibili, ossia realizzano psicologicamente, i fenomeni analizzati dalla linguistica tradizionale. Si tratta, come è chiaro, di un compito teorico sottoposto ad un duplice vincolo empirico: da un lato bisogna raccogliere ed organizzare correttamente i dati linguistici, in parole povere descrivere le lingue e i fenomeni di linguaggio; dall'altro bisogna legare queste descrizioni ad ipotesi empiriche sui processi sottesi, e dunque ad un diverso ordine di dati che è tipicamente di pertinenza degli psicologi. Si potrebbe insomma dire così. Esiste un terreno di ricerca squisitamente interdisciplinare, relativo alla relazione tra fenomeni linguistici e processi di pensiero, sul quale da qualche decennio si incontrano gli sforzi e le competenze di linguisti, psicologi, filosofi, studiosi di intelligenza artificiale: il contributo proprio dei linguisti a questa impresa teorica può essere denominato linguistica cognitiva in accezione ampia.

Una differenza importante tra le due accezioni è questa: mentre quella ristretta esclude (ed anzi comporta una contrapposizione con) le teorie di Chomsky sul linguaggio, l'accezione ampia al contrario trova in Chomsky un esponente di primo piano. Di più: non è esagerato dire che a lui va il merito di avere fondato l'intera impresa della spiegazione psicologica del linguaggio così come essa si configura oggi. In questo contributo adotteremo un approccio «misto». Faremo nostra in parte l'accezione ampia di «linguistica cognitiva», ragione per cui cercheremo innanzitutto di dare un'idea della grammatica generativa chomskiana e del modo in cui essa ha posto le fondamenta dell'indagine cognitiva del linguaggio. A questo dedicheremo però uno spazio relativamente limitato, per rendere conto anche di una famiglia di più recenti posizioni alternative tra le quali ha un posto importante la linguistica cognitiva in senso stretto. Uscendo dalla contrapposizione troppo semplicistica tra grammatica generativa e linguistica cognitiva, potremmo descrivere la situazione odierna come un fiorire di proposte teoriche che si allontanano in misura più o meno drastica e deliberata dal paradigma chomskiano classico. La linguistica cognitiva stricto sensu è solo una di queste proposte, altre provengono dalle file della stessa scuola chomskiana, e persino le posizioni dell'ultimo Chomsky, come vedremo, evidenziano qualche convergenza con il generale orientamento teorico che andiamo a ricostruire.

In pratica l'obiettivo qui perseguito non può essere quello di fornire una panoramica esaustiva. L'orizzonte delle posizioni si presenta troppo ricco e frastagliato. Dovremo limitarci ad esplorarne alcune che rivestono a nostro giudizio un valore esemplare, seguendo una duplice esigenza: in primo luogo, ricostruire appunto le principali tendenze di fondo che ci sembrano caratterizzare questa fase della riflessione su linguaggio e cognizione; in secondo luogo, rendere conto di come queste tendenze si articolano ai diversi livelli della semantica, sintassi e pragmatica. Questo non solo per dare un quadro più ampio, ma anche perché una delle poste in gioco nel dibattito riguarda precisamente i confini e le relazioni tra queste componenti del linguaggio.

Possiamo infatti raccogliere in due grandi temi le linee di fondo del presente contributo.

Il primo tema è quello della perdita di centralità della sintassi, in misura più marcata mano a mano che ci allontaniamo dal paradigma chomskiano classico. In altri termini, viene messa in discussione l'idea che la sintassi determini in maniera esclusiva la struttura della frase, e costituisca per così dire il cuore del linguaggio. Si fa strada, al contrario, la tesi che la semantica e/o la pragmatica svolgano un ruolo nel determinare la struttura di frase. Nei casi più moderati viene riconosciuta una sostanziale autonomia tra sintassi e semantica/pragmatica, assegnando a ciascuna di esse un ruolo distinto nell'organizzare la frase. Nei casi più estremi. l'organizzazione sintattica della frase è fatta dipendere da quella semantica/pragmatica. In tali casi è lecito parlare di un orientamento funzionalista, nel senso che la sintassi è ricondotta a spiegazioni funzionali: ogni categoria, costruzione ecc. viene spiegata in base ad esigenze concettualiespressive dei parlanti.

Il secondo tema è quello di una trasformazione del modo di pensare la sintassi in quanto tale. Quest'ultima era concepita da Chomsky come un sistema di regole prive di eccezioni, che operano in rigorosa separazione da quegli aspetti storici e idiosincratici delle lingue di cui il lessico costituiva il rappresentante paradigmatico. In pratica, si possono distinguere due aspetti per i quali la sintassi veniva pensata come un sistema di regole autonomo. Un primo aspetto è quello biologico: mentre il lessico sarebbe appreso in funzione di contingenze storiche (la nostra appartenenza ad una certa comunità, gruppo sociale, professione ecc.), la sintassi verrebbe fissata dalla nostra costituzione biologica. Le regole sintattiche, per così dire, sarebbero un caso di leggi di natura. Un secondo aspetto è quello computazionale. La sintassi viene concepita come un sistema formale sul modello della matematica o della logica; qui le regole agiscono con valore imperativo (senza eccezioni), indifferenti a qualsiasi caratteristica esterna al sistema stesso. Entrambi i punti sono stati messi in discussione nei decenni passati con crescente vigore. La nozione di regola è scomparsa del tutto dall'orizzonte, o è stata reinterpretata in modi che hanno cancellato ogni confine netto tra (regolarità della) sintassi e (idiosincraticità del) lessico. La sintassi è apparsa sempre meno come un sistema chiuso di regole che si applicano senza eccezioni. E sempre meno è apparsa difendibile l'idea di una sintassi specificata nei dettagli dalla nostra costituzione biologica.

Questi due temi sono ovviamente intrecciati: la maniera di pensare la sintassi si è modificata nella misura in cui è entrata in crisi l'idea di una sua specificità in quanto motore autonomo del linguaggio. Un numero crescente di studiosi ha cominciato a vedere la sintassi come governata dallo stesso genere di principi cognitivi che regolano semantica e pragmatica, ma anche altri ambiti della cognizione. Tra questi principi, ve ne sono due di particolare importanza. Il primo è l'esistenza di fenomeni di prototipicità, ossia il fatto che le categorie in molti casi non sono governate da criteri rigidi per determinare quali individui vi appartengano. Come si vedrà, questo è un tema che ha avuto un grande sviluppo in semantica, ma ha esteso i suoi effetti anche sulla sintassi. In particolare, in molti ritengono adesso che l'ambito di applicazione di una regola sintattica non sia fissato da criteri rigidi: è soggetto anch'esso a fenomeni di prototipicità. Un secondo principio è quello delle pressioni che l'intenzione comunicativa esercita sulle produzioni linguistiche. La nozione di intenzione comunicativa è tipicamente pragmatica. Ora, l'approccio chomskiano classico separa drasticamente sintassi e pragmatica. ma con ciò si priva di uno strumento importante per spiegare la dinamica storica dei sistemi grammaticali. Al contrario, gli approcci cognitivi con orientamento funzionale hanno valorizzato il tema dell'intenzione comunicativa e del modo in cui ciò produce innovazione grammaticale. La sintassi non è un sistema di regole fisse che il parlante si limiterebbe ad applicare, essa è piuttosto un repertorio di strumenti che possono venire adattati a esigenze comunicative diverse da quelle previste (prototipicamente). In tal modo, la grammatica appare come il risultato di una dinamica storica fatta da processi di innovazione, e da processi di grammaticalizzazione (fissazione) di alcune tra queste innovazioni. Anche per questo aspetto la distanza tra sintassi e lessico viene colmata, nel senso che essi non appaiono più collocati sui versanti contrapposti della biologia e della storia rispettivamente, bensì si riconosce loro una comune dimensione storica.

Non che la biologia scompaia dall'orizzonte. L'idea di caratteristiche universali del linguaggio fissate dalla biologia permane, ma si riduce a pochi tratti estremamente generali. In definitiva, la discussione sui fondamenti biologici non è più concentrata su un «organo del linguaggio» che renderebbe la sintassi sostanzialmente estranea alla storia. Il dibattito evoluzionistico tende piuttosto a porre l'accento su alcune (poche) precondizioni biologiche generali del linguaggio.

2. LO SFONDO CHOMSKIANO

In Aspetti della teoria della sintassi, Chomsky [1965] distingue tre livelli di adeguatezza che il linguista deve proporsi di conseguire nello studio delle lingue e dei linguaggi, L'adeguatezza osservativa consiste nell'individuare regole capaci di generare tutte e soltanto le frasi che appartengono alla lingua in oggetto, ossia quelle che i parlanti della lingua giudicano grammaticali. L'adeguatezza descrittiva consiste nella capacità ulteriore di rendere conto delle intuizioni dei parlanti circa la struttura interna delle frasi grammaticali. In altri termini, non solo le regole devono generare tutte e solo le frasi grammaticali ma devono anche farlo assegnando ad ogni elemento della frase il suo giusto ruolo strutturale. Inf ine l'adeguatezza esplicativa impone un vincolo ulteriore, chiedendo che le regole individuate siano il più possibile uniformi attraverso tutte le lingue umane. L'idea sottesa è che si possa ricondurre la pluralità delle lingue ad uno schema unitario, ad un insieme di principi universali realizzati con piccole variazioni nelle diverse lingue.

Già in queste poche nozioni sono concentrate alcune delle questioni fondamentali non solo della teoria chomskiana, ma anche dell'eredità complessa che questa trasmette alla linguistica cognitiva. Vi si intrecciano infatti tre idee di fondo, ciascuna delle quali merita di essere valutata indipendentemente. Una è l'idea che le lingue e il linguaggio siano organismi formali: ossia sistemi dotati di una rigorosa struttura sintattica (una grammatica), costituita da un insieme chiuso di regole indifferente a informazioni di altro genere. La seconda è che il parlante ha una conoscenza implicita del linguaggio, in particolare delle regole che ne costituiscono la grammatica: l'applicazione di queste regole è governata appunto da processi psicologici impliciti, inconsci. La terza è l'ipotesi che questa conoscenza e questi processi siano riconducibili ad un insieme ristretto di principi universali, inscritti nel patrimonio genetico della specie. Esaminiamo questi tre aspetti nell'ordine.

2.1. Il linguaggio come sistema formale

Se anche il contributo di Chomsky (e della sua scuola) si limitasse a questo singolo aspetto, come di fatto non è, egli avrebbe guadagnato un posto di primissimo piano nella storia del pensiero linguistico per il grado di completezza e raffinatezza a cui ha portato la descrizione formale della sintassi (tra le opere fondamentali per ricostruire questa riflessione, ricordiamo almeno Chomsky [1957: 1965: 1988]: per un'introduzione generale relativamente aggiornata si veda Cook e Newson [1996]: una fortunata introduzione di ispirazione chomskiana è anche Pinker [1994]). Una delle sue principali scoperte teoriche consiste forse nell'avere valorizzato pienamente una nozione intermedia tra quelle della frase e delle categorie grammaticali terminali (nome, verbo, aggettivo ecc.); la nozione di sintagma. Un sintagma è un gruppo organizzato di parole che si raccoglie intorno a una testa, ossia una parola che funge da suo principio organizzatore. Un sintagma che ha per testa un nome è detto sintagma nominale, sintagma verbale se la testa è un verbo, sintagma preposizionale se è una preposizione ecc. La testa determina diverse caratteristiche del proprio sintagma: il numero degli altri elementi che lo costituiscono, e che sono detti argomenti (della testa): la categoria grammaticale di questi argomenti; ed anche certe caratteristiche semantiche che gli argomenti devono possedere.

L'importanza della nozione di sintagma consiste in ciò: che essa consente di gettare un ponte tra la frase e le categorie terminali, specificando passo per passo – in modo algoritmico, tramite una procedura esatta – come si possano generare le infinite frasi della lingua, ossia le infinite combinazioni possibili di elementi grammaticali. Proprio per questa capacità (in linea di principio) di generare tutte e solo le frasi grammaticali di una lingua, la teoria è stata battezzata grammatica generativa.

In pratica, si tratterà di specificare la struttura della frase nei termini dei sintagmi che possono costituirla, quindi la struttura di questi sintagmi, e così via fino ad arrivare alle categorie terminali. Questo viene fatto attraverso l'individuazione di regole, chiamate Regole a Struttura Sintagmatica (abbreviato in Regole SS), rappresentate con una notazione di questo genere:

$$F \rightarrow SN - SV$$

 $SN \rightarrow (Art) - (SA) - N - (SA)$
 $SV \rightarrow V - (SN) - (SP)$

La prima riga dice che la frase è composta da un sintagma nominale seguito da un sintagma verbale. La seconda dice che il sintagma nominale è a sua volta costituito da un articolo facoltativo (come indicato dalle parentesi tonde), seguito da un sintagma aggettivale facoltativo, seguito dal nome, seguito da un secondo sintagma aggettivale facoltativo. Un esempio di SN nel quale tutti questi elementi sono presenti è «il bel ragazzo biondo». La terza dice che il sintagma verbale è costituito da un verbo, seguito da un sintagma nominale facoltativo, seguito da un sintagma preposizionale facoltativo. Un esempio di SV nel quale tutti questi elementi sono presenti è ha revalato un libro a Claudia. (È evidente che stiamo ignorando una serie di possibili complicazioni: ci interessa esporre il metodo, non i dettagli dell'analisi. È altresì evidente che le regole sarebbero differenti se esemplificassimo con una lingua diversa dall'italiano.) I nuovi sintagmi che sono stati introdotti - SA, SP - dovranno a loro volta essere analizzati da altre Regole SS, ad esempio:

$$SP \rightarrow P - SN$$

Ossia, il sintagma preposizionale è costituito da una preposizione seguita da un sintagma nominale. Come si vede, le Regole SS descrivono una struttura «a scatole cinesi», dove le scatole sono sintagmi (perciò: Regole a Struttura Sintagmatica). Un nome (ad esempio: ragazza) è un costituente di un sintagma nominale (la ragazza) che può essere costituente di un sintagma preposizionale (alla ragazza) che può essere costituente di un sintagma verbale (ha regalato un libro alla ragazza) che è costituente della frase (Paolo ha regalato un libro alla ragazza).

Tutto ciò non dà che un'idea terribilmente semplificata del complessivo apparato teorico-descrittivo approntato da Chomsky (e dalla sua scuola). Ma dovrebbe essere sufficiente a cogliere lo spirito dell'impresa, con la quale la descrizione delle lingue ha raggiunto un grado di rigore e ricchezza davvero stupefacente: un risultato che non sarebbe inficiato nemmeno se si dovessero mettere in discussione certi presupposti psicologici della teoria chomskiana, come avremo modo di precisare più avanti.

2.2. La cognizione e i processi psicologici inconsci

Il secondo aspetto che vogliamo sottolineare, e che testimonia della grandezza di Chomsky e del suo contributo alla storia delle idee (non solo linguistiche), riguarda alcune tesi di fondo circa la natura dei processi psicologici. L'idea generale è che descrivere una lingua significa descrivere una competenza posseduta dal parlante. Questa competenza, questo sapere che il parlante possiede, non è altro che la grammatica della lingua.

Competenza (ingl. competence) è per la grammatica generativa un termine tecnico. adoperato cioè in modo consapevole e sistematico per marcare una distinzione con ciò che viene invece chiamato esecuzione (ingl. performance). Quest'ultima è l'insieme dei processi con cui la competenza viene realizzata in concreti atti linguistici. La distinzione appare fondamentale a Chomsky perché anche se la più ovvia manifestazione della competenza è quella che passa attraverso la sua esecuzione, tuttavia questa (ossia, i processi che la costituiscono) incide in vari modi sul risultato. Pertanto, una descrizione basata sui risultati dei processi esecutivi darebbe un'immagine distorta della competenza grammaticale. Per limitarci a qualche esempio, le concrete prestazioni linguistiche potrebbero essere segnate da lapsus, esitazioni, correzioni, che sono il frutto dei processi di esecuzione e non rispecchiano le vere competenze del parlante. O ancora, i processi di esecuzione soggiacciono alle limitazioni proprie della memoria a breve termine, e pertanto rendono inutilizzabili per il parlante infinite espressioni che la sua competenza gli consentirebbe di formare. Pertanto, per ricostruire la competenza dei parlanti il linguista non potrà basarsi su corpora di frasi da essi concretamente prodotti: sarà invece più utile ricorrere ai loro giudizi di buona formazione, ossia alle loro valutazioni «a freddo» circa quali frasi siano o meno grammaticalmente corrette.

La nozione di competenza così come delineata da Chosmky ha un effetto dirompente non solo sulle vicende della linguistica, ma anche sul dominio della scienza psicologica. L'idea di identificare la grammatica con una conoscenza implicita è tutt'altro che banale ed ovvia negli anni in cui lo studioso comincia ad esporla. Al contrario, con essa Chosmky ingaggia una battaglia su due fronti.

Innanzitutto, viene messa in discussione l'idea consolidata nella tradizione filosofica (e forse nel senso comune) secondo cui la conoscenza è l'insieme dei contenuti mentali a cui abbiamo accesso cosciente, e su cui operiamo in modo consapevole nel ragionamento. Come potrebbe essere una nostra conoscenza qualcosa che non siamo in grado di afferrare e riferire a piacere? Eppure, la nostra «conoscenza» delle regole della lingua è proprio un contenuto mentale a cui non abbiamo accesso cosciente e volontario: tanto è vero che occorrono gli sforzi di generazioni di linguisti per ricostruirla faticosamente (e anni di scuola per apprendere, in questa forma esplicita, regole che in gran parte già sappiamo implicitamente). Il punto è così rilevante per Chomsky da indurlo ad esplorare l'opportunità di coniare un'espressione apposita, il verbo to cognize (basato sul sostantivo cognition), perché sia chiaro che qui non si tratta di conoscenza nel senso tradizionale [Chomsky 1986].

Soprattutto, con le proprie idee Chomsky sfida la tradizione dominante nella psicologia (in lingua inglese) del suo tempo; quella del comportamentismo, il cui assioma principale era il divieto di introdurre entità mentali nella spiegazione del comportamento. Tale assioma era conseguenza dell'aspirazione a fare della psicologia una scienza empirica a tutti gli effetti, e della congiunta diffidenza nei confronti di un complesso di nozioni – quelle che ruotano intorno all'idea di mente - con le quali la filosofia e il senso comune commerciano da sempre con troppa disinvoltura. Si parla di rappresentazioni mentali, di concetti, di intenzioni, desideri ecc.: ma che evidenza abbiamo, dopotutto, che cose del genere esistano davvero? Non vediamo altro che comportamenti. Il tentativo del comportamentismo è allora quello di spiegare la totalità dei comportamenti animali (esseri umani inclusi) con un insieme di strumenti teorici ridotto al minimo, che consenta di eliminare la ridda delle tradizionali entità mentali. Gli strumenti teorici individuati sono essenzialmente la correlazione tra stimoli (ambientali) e risposte (comportamentali), che si manifesta anche negli organismi più elementari in forma di riflessi innati: e il meccanismo del condizionamento. attraverso il quale organismi superiori sono in grado di apprendere nuove correlazioni stimolo-risposta.

È questo il contesto teorico nel quale Burrhus Skinner, uno dei protagonisti della psicologia comportamentista, pubblica nel 1957 il libro Verbal Behavior; con esso tenta di ricondurre anche il linguaggio umano dentro lo schema esplicativo stimolo-risposta, Chomsky - che nello stesso anno con Syntactic Structures pubblica la prima fondamentale esposizione del proprio programma di ricerca - in una celebre recensione del libro di Skinner chiarisce le ragioni della sua sfida al comportamentismo [Chomsky 1959]. L'idea di fondo è che lo schema di spiegazione basato sulle nozioni di stimolo e risposta è applicabile solo quando ad ogni classe di stimoli ambientali corrisponda una risposta comportamentale regolare e prevedibile, cosicché sia possibile ricostruire un elenco chiuso di correlazioni stimolo-risposta. Ma il comportamento linguistico umano non soddisfa questa condizione: dato un qualunque stato di cose, non possiamo sapere in anticipo cosa dirà un individuo. Di fronte ad una simile imprevedibilità dei comportamenti. non siamo pertanto in grado di stabilire alcuna correlazione stimolo-risposta. Dobbiamo piuttosto immaginare un dispositivo capace di produrre l'infinita varietà delle frasi possibili, ciò che viene realizzato nel modo descritto nel paragrafo precedente. Questo dispositivo secondo Chomsky costituisce appunto la nostra conoscenza implicita del linguaggio.

Per inciso, quando parla delle infinite frasi possibili in ciascuna lingua umana Chomsky intende fare un'affermazione non vaga e un po' iperbolica, bensì rigorosamente letterale. Come già diceva Humboldt e Chomsky ripete, la lingua è un meccanismo che fa un uso infinito di mezzi finiti. Lo dimostra formalmente il meccanismo della ricorsività in parole povere, la possibilità che una regola as riapplicata a se stessa infinite volte. Pacciamo un esempio. Introduciamo una regola a struttura sintagmatica secondo cui ad un sintagma nominale ne possiamo aggiungere un altro tramite congiunzione, ottenendo un nuovo sintagma nominale:

Applicata questa regola una prima volta, otteniamo ad esempio il SN Paolo e Roberto. Poiché questo è ancora un sintagma nominale, possiamo riapplicargli la regola, ossia aggiungere un altro sintagma nominale ottenendo ancora un sintagma nominale (Paolo e Roberto e il ragazzo con il cappello), e così via senza fine. Un altro caso tipico di ricorsività sono le frasi relative, come nella celebre filastrocca e venne il fuoco che bruciò il bastone che picchiò il cane... La nozione di ricorsività ha svolto un ruolo importante nella riflessione di Chomsky per almeno due aspetti. Primo. essa ha costituito un esempio paradigmatico della distinzione tra competenza ed esecuzione: un conto sono le limitazioni della nostra memoria a breve termine, che circoscrivono di fatto l'applicazione delle regole ricorsive dentro limiti piuttosto ristretti; un altro conto è la competenza che abbiamo in linea di principio, grazie alla quale riconosciamo come corrette anche frasi che non useremmo mai a causa di quei limiti pratici. Secondo, dimostrando che le lingue hanno dimensione infinita, il fenomeno della ricorsività rende evidente l'impossibilità di ridurle ad una spiegazione comportamentista: come abbiamo visto, questa esige un repertorio circoscritto di stimoli/comportamenti. (Una terza caratteristica della ricorsività che Chomsky giudica importante sarà indicata più avanti.)

Con simili argomentazioni, e con il suo modello del linguaggio, Chomsky dà un potente contributo ad un processo che in parte stava già cominciando a delinearsi ai margini della galassia comportamentista. Alcuni studiosi formatisi dentro quel paradigma avevano preso atto che comportamenti appena un po' flessibili non ammettono di essere spiegati senza postulare delle rappresentazioni interne. Soprattutto, un certo numero di psicologi, filosofi, studiosi di intelligenza artificiale si convincono della necessità/possibilità di studiare i comportamenti intelligenti in termini di processi mentali che operano su rappresentazioni mentali. La grammatica generativa diventa subito un paradigma tra i più autorevoli di questo tipo di concezione: essa descrive la competenza linguistica come un sistema di regole rappresentate nelle menti dei parlanti. Prende così corpo quella che viene battezzata scienza cognitiva, e al suo interno la psicologia comportamentista cede il passo a quella cognitiva. La seconda eredita dalla prima la vocazione a porsi come scienza sperimentale; semplicemente. non si ritiene più possibile dare una spiegazione scientifica dei comportamenti intelligenti senza attribuire agli agenti rappresentazioni mentali. Inoltre, in perfetta sintonia con l'impostazione chomskiana, viene meno l'identificazione tra processi intelligenti e processi coscienti. Nell'enorme varietà dei processi mentali ve ne sono certo di deliberati e consapevoli. Ma vi è anche una quantità di processi cognitivi complessi, che manipolano i dati a disposizione in modo intelligente (ossia efficace, razionale rispetto agli scopi) senza che il soggetto ne abbia alcuna consapevolezza.

Come si spiega una simile «razionalità» non cosciente? La spiegazione è affidata all'idea di meccanismi innati: gli organismi viventi dispongono di strutture cognitive formatesi nel corso della loro evoluzione, nelle quali sono depositate conoscenze che dunque non devono essere apprese individualmente (né tanto meno si richiede che siano accessibili in modo cosciente). Con questo, giungiamo al terzo ed ultimo punto della nostra breve ricognizione chomskiana.

2.3. L'innatismo

La grammatica generativa sferra un attacco frontale a quella che in filosofia possiamo chiamare tradizione empirista, in difesa dell'idea di conoscenza innata. Anche da questo punto di vista, la posizione e gli argomenti di Chomsky diventano paradigmatici per l'intera scienza cognitiva.

L'empirismo filosofico aveva sostenuto che la mente umana è alla nascita priva di conoscenze, e queste sono acquisite nel corso dell'esistenza tramite l'esperienza percettiva. L'approccio empirista ha goduto di largo credito anche presso gli psicologi. Esso era implicito nella generale impostazione comportamentista, che riduceva l'intero panorama dei comportamenti cognitivi innati a pochi principi universali, validi per ogni specie animale. Si disconosceva in tal modo il fatto che ogni specie ha predisposizioni cognitive differenti ovvero capacità differenti di cogliere ed utilizzare i dati ambientali: in altri termini, ogni specie ha un bagaglio di pre-conoscenze differenti che la guidano nell'uso efficace di certe specifiche informazioni. Ma Chomsky, oltre che col comportamentismo. deve ingaggiare battaglia anche con una diversa scuola in psicologia; quella che si basa sulle idee dello svizzero Jean Piaget. Questi aveva elaborato un complesso e dettagliato modello dello sviluppo cognitivo del bambino basato sull'assunto empirista secondo cui, tolte poche capacità innate estremamente generali, l'intera gamma delle conoscenze e abilità individuali poteva prendere forma attraverso l'interazione sensoriale e motoria col mondo esterno. Lo scontro con Piaget, e più in generale con l'empirismo, si consumerà a due livelli differenti: tramite il successo di un argomento teorico specificamente applicato al caso del linguaggio, il cosiddetto argomento della povertà dello stimolo; e mediante una serie di evidenze sperimentali che riguardano anche ambiti diversi dal linguaggio.

L'argomento della povertà dello stimolo è basato sull'idea seguente: l'input linguistico al quale il bambino è esposto nel periodo durante il quale sviluppa le proprie capacità verbalì è affatto insufficiente per spiegare tale sviluppo. Intanto, per le ragioni già viste, le concrete manifestazioni della competenza grammaticale non rispecchiano quest'ultima in modo affidabile: come si dice, l'input è spesso degradato, nel senso che i parlanti commettono errori involontari, lapsus, talvolta le frasi rimangono incomplete ecc. In secondo luogo, le regole sintattiche sono astratte e in molti casi notevolmente complesse. Il bambino – si ossiene – non può estrarre, da pochi esempi, la regola esatta: perché sia effettuata la giusta generalizzazione occorrerebbe che l'input fosse molto ricco e sistematico. Ma per lo più non è così il bambino sembra catturare senza error la generalizzazione richiesta, sebbene il numero e la qualità degli esempi a cui è stato esposto siano modestissimi. La conclusione che viene tratta dall'argomento è la seguente: se l'imput non è sufficiente per spiegare le raffinate capacità linguistiche che il l'imput non è sufficiente per spiegare le raffinate capacità linguistiche che il l'imput non è sufficiente per spiegare le raffinate capacità linguistiche che il bambino presto manifesta, vuole dire che quelle capacità non sono il prodotto di un apprendimento; o, in altre parole, non sono il risultato di un processo di induzione dall'esperienza. Gli individui umani nascono con una predisposizione innata per la grammatica del linguaggio: in qualche senso, la conoscono già alla nascita (cfr. anche cap. II, §§ 2 e 3.1).

Naturalmente bisogna rendere conto del fatto che le lingue del mondo hanno grammatiche differenti: ossia, c'è il problema di raccordare la realtà delle grammatiche particolari con la tesi di una Grammatica Universale innata. La soluzione a questo problema è fornita dalla **teoria dei principi e parametri** [Chomsky 1981]. L'idea è che tutte le lingue condividono alcuni principi molto generali, e che le differenze tra di esse vanno ricondotte a un certo numero di parametri, ossia di opzioni tra poche varianti. Un esempio semplice è il parametro del soggetto nullo: vi sono lingue nelle quali il soggetto deve essere sempre espresso, ed altre in cui può anche non esserlo. In un caso del genere, entrambe le possibilità sarebbero previste dalle nostre conoscenze innate: il bambino non dovrebbe apprendere ex novo una regola, estraendola dai dati linguistici; il compito che lo attende è quello, cognitivamente meno impegnativo, di selezionare tra le due possibilità previste quella che effettivamente si manifesta nella lingua a cui è esposto.

Questo argomento ha avuto un successo straordinario, ed è considerato da molti un punto di riferimento per l'intera scienza cognitiva. Ha contribuito ad ispirare ricerche in una serie di ambiti differenti dal linguaggio, in ciascuno dei quali si ritiene che sia stata dimostrata l'esistenza di principi innati: si parla in questo senso di una fisica ingenua, una matematica ingenua, una biologia ingenua ecc. (cfr. anche cap. I, §§ 2 e 3.3). Ovvero, ad esempio, per fisica ingenua si intende un insieme di principi che presiedono all'organizzazione dei dati relativi ai corpi fisici ed ai loro movimenti, principi che sarebbero all'opera nella percezione fin dalle prime settimane di vita dei bambini e che pertanto non sembra possibile spiegare nei termini di un apprendimento dall'esperienza.

2.4. Sviluppi e problemi (I): verso il minimalismo

Possiamo a questo punto rimettere insieme i temi degli ultimi tre paragrafi in una formulazione sintetica. Al cuore della teoria chomskiana vi è l'ipotesi a) che la sintassi, concepita come un sistema autonomo di regole, sia il nucleo essenziale del linguaggio; b) che questo sistema autonomo di regole sia realizzato da processi cognitivi non coscienti, configurando quello che con Fodor [1983] è diventato consueto chiamare un modulo; c) che il modulo cerebrale della sintassi sia parte della nostra dotazione innata. Su ciascuno di questi punti (descrizione della sintassi; natura dei processi cognitivi; innatismo) Chomsky ha dato un contributo formidabile alle scienze cognitive del linguaggio. Ouello che tuttavia oggi appare compromesso, come preciseremo tra poco, è proprio il quadro d'insieme: la possibilità di mantenere il legame tra l'apparato descrittivo della sintassi e i concreti processi cognitivi, e tra tutto questo e l'ipotesi dell'innatismo. In pratica, le difficoltà via via emerse nel corso dei decenni hanno prodotto nella grammatica generativa una quantità di aggiustamenti teorici di dettaglio e anche alcune modifiche radicali. Segnaleremo qui un paio di punti che ci apnajono cruciali:

Una prima difficoltà riguarda la relazione tra il primo ed il secondo dei temi che abbiamo focalizzato: la descrizione formale della sintassi, e la natura dei processi psicologici coinvolti. Nonostante alcune complicazioni recenti (si veda ad esempio cap. V, § 3), la concezione dei processi psicologici che Chomsky ha contribuito ad elaborare (quella propria della scienza cognitiva classical gode di buona salute: i processi cognitivi continuano ad essere visti (per certi aspetti importanti) come manipolazioni, in molti casi inconsec, di rappresentazioni mentali. Se però passiamo da questo livello generale alla questione specificamente linguistica «quali processi sono in gioco nella produzione/comprensione del linguaggio?» el successo dell'impresa chomskiana è molto più dubbio. Soprattutto, è venuta meno la speranza che la raffinata descrizione emersa da decenni di grammatica chomskiana rispecchi i reali processi siscologici in atto nel linguaggio.

Una precisazione è opportuna: la distinzione tra competenza ed esceuzione di cui abbiamo detto sopra non intendeva suggerire una separazione tra i compiti del linguista, cui sarebbe spettata la descrizione della struttura grammaticale astratta, e quelli dello psicologo che si sarebbe occupato dei concreti processi cognitivi coinvolti. Nella nozione stessa di competenza si assumeva (più o meno esplicitamente) che fossero catturati alcuni dei processi cognitivi in questione: più precisamente, quelli che presiedono alla costruzione della struttura sintatica. Una formulazione esplicita di questa posizione la si trova nella cosiddetta coding hypothe: it sostenuta da Mehler [1963] e Miller [1962]; si veda Townsende Bever (2001]. Per comprenderla almeno per grandi linee, dobbiamo accennare ad un aspetto ulteriore della grammatica generativa, che ha avuto una straordinaria importanza storica: la distinzione tra struttura profonda e superficiale.

In effetti le regole a struttura sintagmatica (che abbiamo presentato sopra) non avevano, nel quadro teorico immaginato da Chomsky, l'onere di generare la totalità delle frasi grammaticali di una lingua. Esse si limitavano a produrre una sorta di schema di base, a partire dal quale era possibile generare tutti i tipi di frase attraverso l'applicazione di ulteriori regole, dette di trasformazione (o più semplicemente, trasformazioni). Lo schema di base prodotto dalle regole a struttura sintagmatica prendeva il nome di struttura profonda, e corrispondeva in sostanza alla forma positiva della frase dichiarativa attiva (es. il rapazzo mangia la mela); questo schema poteva poi essere sottoposto a trasformazioni che generavano la corrispondente frase dichiarativa attiva in forma negativa (il ragazzo non mangia la mela), la dichiarativa passiva (la mela è mangiata dal ragazzo), l'interrogativa (in inglese la frase interrogativa comporta alcuni movimenti di costituenti, e l'introduzione dell'ausiliare) e le possibili combinazioni tra queste (interrogativa negativa ecc.), ma anche altre forme sintattiche secondarie (ad esempio la frase scissa è il ragazzo che mangia la mela ecc.). La forma sintattica finale che la frase assumeva, una volta applicate le opportune trasformazioni, prendeva il nome di struttura superficiale.

La coding hypothesis consisteva nel prendere sul serio questo meccanismo in quanto ipotesi psicologica assumendo, in pratica, che la mente dei parlanti applicasse dapprima le regole a struttura sintagmatica per generare la struttura profonda, e successivamente le trasformazioni che a partire da questa generano la definitiva struttura superficiale. Per mettere alla prova l'ipotesi furono perciò condotti numerosi studi sperimentali basati sui tempi di risposta, in base all'idea che la produzione/comprensione di una frase richiedesse un tempo tanto maggiore quanto più la sua forma differiva dalla struttura profonda – in questo caso, infatti, il parlante avrebbe impiegato un certo tempo ulteriore (per quanto pi con presidente produce del produc

Questo insuccesso empirico si incontrava con alcune resistenze teoriche. In particolare, un grupo di allievi di Chomsky diede vita ad un progetto di ricerca, detto semantica generativa, il cui assunto di fondo era: non vi è alcun livello profondo di rappresentazione di natura sintattica, la struttura di partenza sulla quale si applicano le trasformazioni ha piutosto natura semantica. Questa centralità della semantica rispetto alla sintassi è un tratto che ritroveremo nella linguistica cognitiva stricto sensu. Anzi si può dire che la semantica generativa tentava di conciliare la centralità della semantica con un'impostazione sintattica generativa, e che il fallimento in quest'impresa spinge alcuni dei suoi sostenitori verso l'impostazione radicalmente semanticisa che nel coi a nella linguistica cognitiva.

În ogni modo, le obiezioni della semantica generativa convergevano con le evidenze sperimentali nel dimostrare un punto: la nozione di struttura profonda
come ipotesi psicologica era tutt'altro che intuitivamente evidente o empiricamente solida. Nei decenni che seguono, le vicende della grammatica generativa
vedono afficivolisi l'interesse reciproco tra linguisti e psicologi, quasi a pretere
atto di una impasse che imponeva di rinviare il confronto tra descrizione linguistica e teorie psicologiche, ed emerge in particolare una tendenza a ridurre
l'impegno teorico circa la distinzione tra struttura profonda e superficiale. Per
alcuni anni, la distinzione rimane ma si preferisce parlare di estruttura Sw (finavece che struttura superficiale, e estruttura Pso (invece che struttura profonda),
per evitare di suggerire concrete implicazioni psicologiche. Più recentemente,
Chomsky ha prodotto un ripensamento profondo della propria teoria, noto come
programma minimalista, in cui la distinzione viene del tutto abolita.

Per la verità, le novità teoriche del minimalismo sono molto più radicali: viene portata alle estreme conseguenze una tendenza emersa già nel corso degli anni Ottanta, che porterà ad abolire la stessa nozione di regola. Chomsky avverte adesso l'esigenza di semplificare al massimo (dunque, di ridurre al «minimo») l'architettura del la teoria linguistica, anche per facilitare il recupero della dimensione empirica e, punto su cui torneremo, di quella biologico-evoluzionistica. I linguisti- attenti ai minuti dettagli della sintassi, e all'obiettivo di renderne conto con un sistema esaustivo di regole – hanno ormai edificato un'architettura intricata che è difficile sottoporre a verifica empirica, e che anzi scoraggia i tentativi

di comprensione da parte dei non specialisti. Questa sensazione di isolamento. e l'esigenza di restituire semplicità alla teoria, si incontrano con una tendenza teorica di lungo periodo: quella di riconoscere il ruolo strutturale del lessico. L'attenzione per tale ruolo risaliva ai primi anni della riflessione chomskiana, ed era manifesta in particolare nella nozione di intorno di sottocategorizzazione. Come possiamo formulare, poniamo, una regola a struttura sintagmatica per la costruzione della frase che valga sia per i verbi transitivi che per quelli intransitivi? Se imponiamo la condizione che il verbo deve essere seguito da un sintagma nominale in posizione di oggetto, la regola non renderà conto del caso di un verbo come correre. Viceversa, se non imponiamo quella condizione la regola non potrà prevedere correttamente il comportamento di un verbo come prendere. La soluzione adottata dalla grammatica generativa è stata concettualmente quella di formulare la regola che comporta il massimo numero di costituenti, bloccando eventualmente l'espressione di alcuni costituenti tramite un'informazione contenuta nel lessico. Ad esempio, al verbo correre nel lessico verrebbe associata l'informazione che esso non chiede (=non ammette) un sintagma nominale oggetto - ciò che veniva notato più o meno così:

Ovvero, carrere è un verbo (V), che segue un sintagma nominale in posizione soggetto (il trattino sottoscritto indica il posto occupato dalla voce lessicale in questione), e che non precede nient'altro (in particolare, nessun sintagma nominale). L'informazione tra parentesi quadre prende il nome di intorno di sottocategorizzazione in quattor restringe l'intorno tipico della categoria: nel caso specifico, mentre i verbi possono apparire (tra l'altro) in intorni di entrambi i tipi seguenti.

il verbo correre ammette solo il primo.

Questo meccanismo riconosceva alla componente lessico un certo ruolo nel determinare il destino sintattico delle parole—sia pure un ruolo negativo, quello di respingere certe combinazioni previste dalle Regole SS. Il passo successivo consiste nell'assegnare un posto teorico centrale a nozioni come quelle di testa (di un sintagma) e valenza. La testa, si ricorderà, è l'elemento centrale di un sintagma; e la sua valenza è il numero di argomenti che la testa richiede nel sintagma, all'interno della cosiddetta teoria X-Barra, che costituisce una fase importante nello sviluppo storico della grammatica generativa, questo dispositivo viene riconoscituto come capace di assorbire in sé buona parte delle Regole SS. Ad esempio, una preposizione in quanto testa di un sintagma preposizionale esige come argomento un sintagma nominale, e questo fatto assorbe in sé la regola come argomento un sintagma nominale, e questo fatto assorbe in sé la regola.

$$SP \rightarrow P - SN$$

e così via. Insomma, se nella componente lessico fossero specificati i contesti sintattici nei quali una data voce lessicale può comparire (ossia, quanti e quali sono i suoi argomenti), avremmo tutta l'informazione necessaria per costruire la totalità delle frasi contenenti quella parola che la grammatica permette. L'informazione che manca, infatti, sarebbe fornita dalle altre voci lessicali con cui si sceglie di combinare quella data.

La strada percorsa dal programma minimalista consisterà nel prendere sul serio tale possibilità teorica, dichiarando superflue le regole. Queste vengono in parte assorbite, nel modo che si è detto, dal lessico; e per la parte residua sono assorbite da principi e parametri. (Ciò riguarda in particolare alcuni meccanismi generali. secondo Chomsky non riducibili alle regolarità locali con le quali opera il dispositivo della sintassi X-Barra.) In ogni modo, non si può non vedere in questo un significativo ripensamento dell'impostazione originaria: una rinuncia ad alcune assunzioni fondanti, che come vedremo riduce la distanza tra la grammatica generativa e alcune delle teorie concorrenti.

(La prima formulazione della sintassi X-Barra è in Chomsky [1970]. Un testo fondamentale per lo sviluppo della teoria è Jackendoff [1977]. Più recenti sviluppi che vanno in direzione di un assorbimento delle regole nel lessico sono: Wexler e Manzini [1987], in cui sono proposte le tesi della parametrizzazione lessicale e dell'apprendimento lessicale - ossia rispettivamente la tesi secondo cui i parametri sintattici che differenziano una lingua dall'altra sono depositati nel lessico, e quella secondo cui di conseguenza l'acquisizione della sintassi si identifica con l'acquisizione del lessico; e Pollard e Sag [1994], che propone una radicale revisione delle teorie chomskiane alla luce dell'idea che l'informazione sintattica sia dislocata nella testa dei sintagmi. Infine, i testi di riferimento per la teoria minimalista sono Chomsky [1993: 1995].)

2.5. Sviluppi e problemi (II): l'innatismo riconsiderato

Un tale ripensamento, che equivale ad un arretramento rispetto ad alcuni dei motivi ispiratori di Chomsky, è particolarmente evidente quando si consideri il tema dell'innatismo. Come si ricorderà, tra le ragioni per separare nettamente il lessico dalla sintassi vi era la convinzione che il primo appartenesse all'ambito delle contingenze storiche. In quanto tale, esso si contrapponeva alla Grammatica Universale (GU), patrimonio comune ed innato della specie umana. Ora, la scelta di «scaricare» le Regole SS sul lessico va vista come un sostanziale alleggerimento della GU: significa concedere che una buona parte di ciò che si era considerato innato deve essere riconsegnato alla dinamica storica.

Questa è in effetti la posizione che Chomsky adotta in modo esplicito negli ultimi anni, come testimoniano alcuni recenti articoli. In particolare, Hauser, Chomsky e Fitch [2002] suggerisce che l'unico tratto specificamente umano (cioè assente negli altri animali) e specificamente linguistico (cioè che non serve capacità cognitive più generali) presente nella nostra dotazione innata potrebbe essere la facoltà di formare strutture ricorsive: quella proprietà della ricorsività che da sempre Chomsky considera un tratto cruciale del linguaggio rimarrebbe adesso l'ultimo vestigio dell'architettura un tempo imponente che fu la GU.

Come accennato in precedenza, una simile tendenza a semplificare e alleggerire la grammatica (universale) risponde anche al biosgon di rendere la teoria linguistica più compatible con considerazioni biologiche, e di n particolare evoluzionistiche. La tesi di un modulo innato della GU, che doveva contenere in buona sostanza l'intera sintassi delle lingue umane in tutti i principali dettagli, costituiva sotto il profilo della teoria dell'evoluzione una sifida al buon senso. Non che sia impossibile l'emergere di strutture biologiche straordinariamente complesse attraverso un meccanismo cieco come la selezione naturale. Il problema è che ciò richiede un processo graduale, nel quale ogni piccolo passo deve garantire un vantaggio nella capacità di sopravvivere e riprodursi. Ma è pensabile che l'emergere di un nuovo tratto nella sintassi delle lingue umane garantisca a chi lo detiene un simile vantaggio? Ciò è tanto meno plausibile quanto più si scende nel dettaglio delle caratteristiche grammaticali. Di qui l'esigenza di ridurre la GU a poche caratteristiche, estremamente generali.

Per la verità, c'è un'altra strada che può essere percorsa – dentro certi limiti. Potrebbe darsi che la sintassi sia (almeno nelle grandi linee) il risultato di un processo evolutivo a due stadi: in un primo tempo si sono sviluppate certe strutture cognitive non specificamente linguistiche, quindi queste sono state riutilizzate per la comunicazione linguistica eventualmente attraverso un ulteriore adattamento selettivo per questa nuova finalità. L'articolo di Hauser, Chomsky e Fitch ha dato avvio ad un serrato dibattito, in particolare con due studiosi di ormazione chomskiana, Steven Pinker e Ray Jackendoff, che hanno proposto precisamente una soluzione di questo genere. Tale soluzione (così come l'intero dibattito) va però letta con una certa attenzione, se si vuole riconoscerne l'esatta posta in gioco. Il dibattito è costituito dal testo originale [Hauser, Chomsky e Fitch 2002] seguito dalla replica di Pinker e Jackendoff [2005], la controreplica di Fitch, Hauser e Chomsky [2005], infine la risposta di Jackendoff e Pinker [2005]. Si veda anche cap. Il, 53.1).

Ad un livello superficiale, l'obiettivo di Jackendoff e Pinker appare quello di mostrare che Chomsky ha rinunciato troppo radicalmente alle proprie iniziali assunzioni innatiste: c'è molto più che la sola ricorsività tra le caratteristiche innate del linguaggio. Tuttavia, è importante notare che con la loro mossa Pinker e Jackendoff non possono spingersi troppo in la nell'assegnate rattai sinattici alla dotazione innata. L'ipotesi che questi tratti siano stati selezionati fin dall'inizio per il linguaggio – abbiamo osservato – è tanto meno plausibile quanto più sesi riguardano fenomeni di dettaglio. Ma lo stesso vale per l'ipotesi che i tratti sintattici siano derivati da strutture cognitive più generali: come potrebbero queste specificare i più fini dettagli della sintassi? In effetti, pur dichiarando che la sintassi innata non si riduce probabilimente alla sola ricorsività, Pinker e Jackendoff non adottano una posizione troppo più radicale su questo terreno. La lista delle caratteristiche innate che propongono include invece una quantità di fenomeni non sintattici: capacità di produrre e percepire i suoni linguistici,

abilità di riconoscere e imitare l'intonazione, abilità di cogliere la correlazione tra suoni verbali e referenti intesi ecc.

Insomma, l'oggetto della loro polemica con Chomsky e colleghi non riguarda tanto le dimensioni della GU: un punto di dissenso almeno altrettanto importante è come si debba delimitare l'ambito del linguistico. Chomsky e colleghi, infatti, non mettono in discussione che alcune delle caratteristiche indicate da Pinker e Jackendoff siano innate: negano però che si tratti di caratteristiche linguistiche in senso stretto. Propongono in tal senso di distinguere tra facoltà del linguaggio stretta (FLN: faculty of language in the narrow sense) e ampia (FLB: faculty of language in the broad sense): la prima include solo le caratteristiche che sono esclusivamente umane ed esclusivamente linguistiche. Pertanto, molte caratteristiche indicate da Pinker e Jackendoff non sarebbero pertinenti per la tesi di Hauser, Chomsky e Fitch: si tratterebbe di caratteristiche non specificamente umane e/o linguistiche. ovvero non appartenenti alla FLN. Esse dunque non toccano l'affermazione che l'unico tratto innato del linguaggio-nel-senso-stretto sia la ricorsività.

Pinker e Jackendoff respingono questo modo di argomentare in base a convincenti considerazioni evoluzionistiche che qui non è essenziale esaminare. Ciò che invece ci interessa è il loro suggerimento che l'errore di Hauser, Chomsky e Fitch [2002] sia il frutto di un pregiudizio teorico, che pervaderebbe la teoria di Chomsky dalle origini fino alla recente svolta minimalista. Il pregiudizio in questione è, a loro avviso, l'idea che nel linguaggio sia possibile distinguere un nucleo essenziale ed una mera periferia, dove il nucleo sarebbe ovviamente la sua organizzazione puramente sintattica. Come si esprime Jackendoff [2002], la grammatica generativa è affetta da una sindrome «sintatto-centrica»: sia in quanto l'elaborazione sintattica è vista come il momento originario dei processi psicologici di comprensione/produzione delle frasi; sia in quanto gli altri componenti del linguaggio sono pensati come meno (o non) linguistici in senso proprio. Ma questa assunzione presuppone, tra l'altro, che vi sia una netta discontinuità tra la sintassi e le altre componenti; che è proprio uno dei punti su cui la grammatica generativa oggi appare maggiormente in affanno. Se, come abbiamo visto e preciseremo meglio, la sintassi tende a confondersi col lessico, diventa difficile mantenere la distinzione tra essa e ciò che non è propriamente linguistico.

Insomma, per un verso Pinker e Jackendoff appaiono più conservatori del minimalismo chomskiano, in quanto vogliono «salvare» una fetta più ampia della GU che non la sola ricorsività. Ma, per un altro verso, è il minimalismo che appare più conservatore: la GU viene sì ridotta drasticamente, ma si pretende che conservi la sua posizione privilegiata. Jackendoff e Pinker [2005] rigettano proprio questo assunto: il linguaggio, sostengono, non ha alcun nucleo essenziale. Esso è il precipitato di un complesso di abilità cognitive (in parte adattate al linguaggio successivamente, dopo essere state selezionate per finalità cognitive differenti) delle quali nessuna può essere considerata «l'essenza» innata del linguaggio. Vi sono senz'altro numerose componenti innate, ma nessuna di esse può aspirare al ruolo di essenza: certo non quel poco di sintassi che ancora si presume essere inscritta nel patrimonio genetico.

3. SEMANTICA COGNITIVA

Dopo avere esaminato la fondazione chomskiana della linguistica cognitiva (in senso ampio), e indicato alcuni sviluppi storico-teorici che hanno trasformato dall'interno quel paradigma, spostiamoci adesso su un terreno dichiaratamente non chomskiano, e talvolta anzi apertamente antichomskiano.

Come abbiamo detto a proposito della semantica generativa, un passo cruciale è stato lo spostamento dell'asse teorico verso la semantica. Tale spostamento è diventato ancora più marcato quando, nel contesto del fallimento della semantica generativa, è sorta la grammatica cognitiva. Basta guardare ai due libri che hanno segnato la nascita di questo paradigma di ricerca: Lakoff [1987] e Langacker [1987]. Quest'ultimo propone esplicitamente un quadro teorico nel quale la struttura sintattica è determinata dalla sottostante struttura concettuale. L'approccio di Lakoff è complementare, nel senso che si basa sul comportamento lessicale delle parole per trarne conseguenze (come suggerisce il sottotitolo del libro: What Categories Reveal about the Mind) su come funziona la mente, in particolare su come è organizzato il sistema concettuale. Possiamo in pratica distinguere due assunti comuni sottesi alle loro analisi. Il primo è che il livello essenziale per l'organizzazione delle frasi sia quello semantico. Il secondo è che la semantica delle espressioni linguistiche sia determinata dal sistema concettuale: la semantica non è, cioè, un dominio di fenomeni strettamente linguistico; al contrario essa si identifica con l'organizzazione della realtà che il nostro apparato cognitivo produce per scopi originariamente extralinguistici. Volendo essere chiari, conviene pertanto aggiungere un terzo assunto: che il nostro sistema concettuale è basato innanzitutto sull'esperienza corporea, sulla dimensione sensoriale e motoria; e che pertanto anche la semantica in primo luogo, e la sintassi in secondo luogo, poggiano sostanzialmente su questa dimensione corporea dell'esperienza. Sulla base di tali assunti, alcuni temi di indagine emergono in primo piano:

- L'organizzazione della sfera concettuale: sapere cosa sono i concetti, come sono strutturati e come entrano in gioco nei processi cognitivi consente anche di spiegare aspetti cruciali dei fenomeni linguistici.
- I processi di comprensione del linguaggio.
- L'organizzazione della frase in funzione della struttura semantico-concettuale: in particolare, quelli che vengono chiamati processi di concettualizzazione, o anche operazioni di costruzione (construal operations).

3.1. Il sistema concettuale

Quanto all'organizzazione del sistema concettuale, tre sono i principali filoni di indagine nell'ambito della semantica cognitiva. Il primo riguarda la polemica con la concezione tradizionale dei concetti, bassata su condizioni necessarie e sufficienti, alla quale viene contrapposta una concezione alternativa: quella che si bass sulla nozione di prototino. Il secondo filone elabora la test dei concetti.

come «micro-teorie», ossia come entità dotate di organizzazione interna e tali da formare insieme una rete organizzata. Il terzo indirizzo è quello della riflessione sulla metafora, vista come un dispositivo generale di organizzazione del sistema concettuale. Vediamo in breve ciascuno di questi punti.

Una concezione tradizionale dei concetti (spesso ricondotta ad Aristotele come suo primo illustre sostenitore) è quella che li identifica sostanzialmente con delle definizioni: elenchi di caratteristiche proprie dei membri della categoria, e che si assume funzionino come criteri per l'appartenenza alla categoria stessa. (Per «categoria» intendiamo l'estensione individuata da un concetto; per «categorizzare» l'atto di ricondurre oggetti sotto un concetto, ovvero di riconoscerli come membri della sua estensione.) I criteri forniti dalla definizione, si dice anche, individuano le condizioni (singolarmente) necessarie e (congiuntamente) sufficienti per l'appartenenza alla categoria. In altri termini, un oggetto cade sotto un dato concetto solo se possiede ciascuna delle caratteristiche del'initorie (ognuna di esse è dunque singolarmente necessaria); e d'altra parte se qualcosa possiede quelle caratteristiche cade sicuramente sotto il concetto (le caratteristiche sono congiuntamente sufficienti).

Questa concezione presenta alcuni vantaggi che hanno reso la sua influenza duratura sia nella riflessione logica sia in quella linguistica. Essa assicura un metodo elegante e maneggevole per trattare il fenomeno dell'inclusione categoriale, che è alla base della semantica sviluppata in logica - ossia di quella semantica che si incentra sull'individuazione delle condizioni nelle quali un enunciato è vero. Ma fornisce al tempo stesso un metodo elegante e maneggevole per analizzare i significati linguistici: sembra a prima vista soddisfacente, per citare l'esempio principe, dire che scapolo significa MASCHIO ADULTO NON-SPOSATO. La stessa grammatica generativa aveva largamente esplorato l'ipotesi di una semantica a tratti (ossia basata appunto su caratteristiche definitorie), anche per spiegare alcuni fenomeni relativi alla distribuzione lessicale. Ad esempio. una frase come il panino mangiò l'uomo, sebbene sintatticamente ben formata, viene giudicata semanticamente inaccettabile perché - si sostiene - il verbo mangiare esige un soggetto che possieda il tratto ANIMATO (mentre il nome panino ovviamente non lo possiede).

A fronte di questi vantaggi, le semantiche basate su condizioni necessarie e sufficienti (in breve, le chiameremo CNS) si scontrano con alcune serie difficoltà. La più ovvia è la difficoltà di pervenire ad analisi dei significati soddisfacenti sotto il profilo teorico. Per un verso le CNS possono appellarsi alla pratica millenaria della stesura di dizionari: ciò attesta che attribuiamo una qualche utilità alla definizione dei significati delle parole. Per un altro verso, tuttavia, proprio tale pratica mostra la difficoltà di giungere a definizioni condivise, ed evidenzia limiti intrinseci del ricorso a definizioni: queste producono un'inevitabile sensazione di arbitrarietà quanto alla scelta dei criteri, e spesso non sembrano affatto cogliere i criteri che come parlanti concretamente utilizziamo.

Inoltre, vi sono ragioni di principio per dubitare che le definizioni siano lo strumento adatto per catturare i significati. (O i concetti: nei limiti del presente discorso possiamo utilizzare le due nozioni in modo interscambiabile. Infatti, si

ricorderà. la semantica cognitiva identifica i significati delle parole con concetti.) Un contributo fondamentale in questa direzione è venuto dagli studi che la psicologa Eleanor Rosch ha condotto alla fine degli anni Settanta (Rosch 1978: Rosch e Mervis 1975] (cfr. anche cap. IV. § 3.1 e cap. V. § 3.2). Questi studi sono basati sulla considerazione che, se i concetti avessero condizioni necessarie e sufficienti per l'applicazione, allora dovremmo riscontrare nei concreti atti di categorizzazione alcune caratteristiche. Intanto, i membri della categoria dovrebbero esserlo tutti allo stesso titolo, ossia non dovremmo giudicare alcuni rappresentanti «migliori» o «peggiori» di altri: infatti, avere le proprietà previste dalla definizione sarebbe tutto (e solo) ciò che occorre per far parte della categoria. In secondo luogo, non dovrebbero esistere casi indecisi: se qualcosa ha le caratteristiche previste cade sotto il concetto, altrimenti no. La Rosch ha quindi effettuato dei test sperimentali basati su prove di categorizzazione, constatando che le evidenze andavano nella direzione opposta. I soggetti esaminati giudicavano alcuni membri della categoria esemplari migliori di altri, e le loro assegnazioni di tipicità erano piuttosto uniformi; inoltre essi si mostravano indecisi nel categorizzare certi oggetti, che percepivano come ai margini estremi della categoria (si parla in tal senso di confini sfumati tra categorie). Questi risultati suggeriscono un'immagine del processo di categorizzazione differente da quella tradizionale. A quanto pare, categorizzare non significa produrre un giudizio netto di appartenenza (o meno) in base a CNS. Piuttosto, sembra essere implicato un giudizio di somiglianza rispetto ad un modello, così che gli oggetti possono apparire più o meno tipici della categoria in funzione di quella somiglianza; ed eventualmente, anche così poco simili da lasciare indeterminato il giudizio. Gli studi della Rosch evidenziano dunque un primo fattore critico nelle semantiche basate su CNS; queste trascurano gli effetti di prototipicità, ossia l'apparente ricorso a giudizi di somiglianza rispetto a ciò che è tipico della categoria. In pratica sono state proposte due vie differenti per renderne conto. In un caso si sono mantenute le liste di caratteristiche proprie delle definizioni. allentando però il vincolo che si tratti di CNS: esse individueranno piuttosto le configurazioni tipiche della categoria, e un oggetto sarà tanto più un buon esemplare quante più saranno le caratteristiche tipiche che possiede. Una seconda via consiste nell'assumere che il prototipo della categoria sia fornito da un singolo esemplare particolarmente «centrale». La differenza tra i due approcci non è solo formale. Il primo rende conto della capacità di astrarre dall'esperienza le caratteristiche più tipiche, anche qualora non vi sia nessun esemplare reale che le presenta tutte (o una gran parte): in altri termini, questo approccio è coerente con la capacità di produrre generalizzazioni astratte. Il secondo approccio d'altra parte rende conto di una diversa evidenza psicologica, ossia il fatto che precedenti esperienze con un esemplare atipico della categoria rendono più facile riconoscere come membro un nuovo esemplare simile a quello. In questo caso, l'esemplare svolge un ruolo diverso dal contributo che fornisce all'astrazione delle caratteristiche tipiche: la sua particolare configurazione è conservata in memoria anche nei suoi tratti meno tipici. Nel corso degli anni Novanta è emerso tuttavia un modello

misto, che consente di tenere insieme le due cose. In particolare, Barsalou e Hale

[1993] e Hampton [1993] hanno suggerito come si possa sfruttare in tal senso la naturale capacità delle reti neurali di catturare al tempo stesso proprietà comuni ed idiosincratiche, tratti parzialmente regolari ed eccezioni (cfr. McClelland, McNaughton e O'Reilly [1995]: si veda anche Mazzone [2000]).

Che gli studi della Rosch abbiano fatto riconoscere un fenomeno di grande importanza per i processi di categorizzazione non vi è dubbio. Che però la categorizzazione si identifichi in tutti i casi con un giudizio di somiglianza rispetto a un prototipo sembra falso. In un celebre articolo Armstrong, Gleitman e Gleitman [1983] mostrava che gli effetti prototipici si manifestano anche nella categoria dei numeri dispari (ossia, ci sono numeri dispari che appaiono più tipici), senza che ciò abbia conseguenze sui giudizi di appartenenza, i quali dipendono in questo caso da criteri definitori netti. Più in generale, numerosi studi [Carey 1985; Gelman e Coley 1991; Keil 1989; Rips 1989] hanno mostrato che nel categorizzare ci si affida a considerazioni diverse dalla semplice somiglianza fisica - considerazioni che si è soliti chiamare teoriche, e che coinvolgono conoscenze sistematiche sulle tipologie di oggetti. Per limitarci a un esempio, tratto da un esperimento di Rips [ibidem], non basta che un oggetto sia fisicamente più simile a una moneta da un dollaro che a una pizza perché si giudichi più probabile che si tratti di un dollaro: sappiamo infatti che qualcosa può essere un dollaro solo a certe condizioni molto precise, e che quindi una pizza può variare il suo aspetto più di quanto può farlo un dollaro. In generale, dunque, i concetti che guidano le nostre categorizzazioni non sarebbero né semplici liste di tratti, né rappresentazioni di singoli esemplari: sarebbero piuttosto complessi organizzati di informazioni, che oltre all'aspetto percettivo concernono l'organizzazione interna degli oggetti, le loro origini, i loro comportamenti, i possibili usi ecc. In questo senso, ogni concetto contiene e/o presuppone micro-teorie relative al tipo di oggetti che rappresenta: perciò si è parlato di una «teoria della teoria» per i concetti. (Per questa nozione di teoria, si veda Murphy e Medin [1985].)

Teoria dei prototipi e teoria della teoria evidenziano due differenti limiti dell'approccio tradizionale basato su CNS, ed entrambe sono state introjettate in qualche modo dalla semantica cognitiva. Le loro tracce, ad esempio, sono evidenti in nozioni come quelle di Modello Cognitivo Idealizzato (Idealized Cognitive Model, abbreviato in ICM) o di categoria radiale, ambedue proposte da Lakoff [1987]. Un ICM è un modello tipico sullo sfondo del quale applichiamo certe caratteristiche definitorie. Si prenda l'esempio classico di scapolo: a dispetto dell'apparente ovvietà della sua analisi come MASCHIO ADULTO NON-SPOSATO, si è fatto notare che avremmo difficoltà ad applicarlo a individui che pure soddisfano questa descrizione - il Papa, un omosessuale che convive con un compagno ecc. In pratica, l'idea di Lakoff è che l'applicazione del termine sia vincolata da un modello di sfondo circa le caratteristiche tipiche dello scapolo e i conseguenti comportamenti tipici verso di esso: uno scapolo è, poniamo, qualcuno che si può cercare di presentare a un'amica ecc. Una categoria radiale è invece un complesso di concetti strettamente imparentati tra loro, in quanto derivabili da un concetto più centrale per sottrazione di qualche caratteristica. Si prenda la parola madre: se il caso normale è quello in cui la madre è insieme la persona che accudisce e quella che ha messo al mondo il bimbo, una madre adottiva non soddisfa la seconda caratteristica. Le recenti innovazioni nel campo medico moltiplicano i sensi nei quali si è portati ad usare la parola: è madre chi ha donato l'ovulo, chi ha partorito il bimbo ecc. Così, abbiamo una famiglia di usi di madre, ciascuno dei quali si allontana per qualche aspetto dal caso tipico.

Se le due nozioni di Lakoff concernono soprattutto effetti di prototipicità nell'uso delle parole. Charles Fillmore prima e Ronald Langacker poi hanno portato l'attenzione sulla natura strutturata («teorica» nel senso specificato sopra) dei significati linguistici. Fillmore [1985] critica sia la semantica a tratti proposta dalla grammatica generativa sia la teoria dei campi lessicali/semantici. A lui si deve la critica all'analisi di scapolo in tratti semantici che Lakoff riprende. In particolare Fillmore sostiene la necessità di tenere conto dei frames (cornici) di sfondo, che spiegano ad esempio perché tra scapolo e zitella passi una differenza ben più complessa di quella che riusciamo a catturare mediante una distinzione basata sui tratti MASCHIO e FEMMINA; una differenza che chiama in causa stereotipi e attese sociali ecc. Ma anche la teoria dei campi semantici è passibile di una analoga accusa di schematicità. In pratica, questa teoria sostiene che il significato di ogni parola dipenda a) dal campo semantico a cui appartiene, e b) dall'esistenza di altre parole nello stesso campo, che delimitano il significato di quella data. Ma si consideri il fatto che l'inglese manca di un'espressione equivalente all'italiano cateto: nel relativo campo semantico troveremo solo il termine che indica l'ipotenusa, senza altri termini che possano delimitarne il significato. Questo implica che il termine inglese per l'ipotenusa avrà un significato diverso da quello italiano? In realtà, sembra che si debba riconoscere ai significati una ricchezza informativa molto maggiore, e in particolare un aggancio più diretto con l'esperienza percettiva. I parlanti non si limitano a sapere che i potenusa appartiene al campo semantico «triangolo rettangolo»: piuttosto essi si rappresentano figuralmente un triangolo rettangolo, o meglio un suo schema. e individuano l'ipotenusa come un preciso elemento figurale di quello schema. Questo garantisce che ipotenusa abbia il suo significato indipendentemente dall'esistenza o meno di parole per i cateti.

La schema del triangolo rettangolo svolge pertanto la funzione di/rame rispetto al quale il concetto di ipotenusa è individuato. Il fatto che il/rame, a differenza del campo semantico, abbia formato figurale, comporta che esso sia inseparabile dalla rappresentazione del concetto: non ci si può rappresentare un'ipotenusa se non come il lato maggiore di un triangolo rettangolo, e dunque come elemento di una rappresentazione più ampia. Quest'idea è stata raccolta e pienamente s'ruttata da Langacker, con la sua distinzione tra base e profilo (ingl. base e profile). La base non è altro che il frame di Fillmore; mentre il profilo è l'elemento della base che emerge in primo piano: ossia, l'elemento che caratterizza lo specifico concetto rispetto a eventuali altri individuati sulla stessa base. Un esempio tipico di struttura profilo-base è la relazione parte-tutto. Si prenda il concetto BRACCIO. Esso non può esistere se non sullo s'ondo del tutto di cui è parte: pertanto, a rigore BRACCIO non è che il profilo del concetto, che ha

per base CORPO UMANO. Analogamente SABATO è comprensibile solo sullo sfondo di uno schema generale del calendario; COMPRARE sullo sfondo di uno schema della transazione commerciale, che implica anche VENDERE, PAGARE, COSTO: FIGLIO non è comprensibile senza il concetto GENITORE, e così via [Croft e Cruse 2004]. In una parola, nessun concetto esiste in modo autonomo. ciascuno implica al contrario una relazione con altri concetti e la costituzione insieme ad essi di strutture più ampie.

Vi è una terza strada che la semantica cognitiva ha intrapreso nell'analisi del sistema concettuale: si tratta degli studi sulla metafora. Qui il presupposto di partenza è (di nuovo) che la metafora non sia un fenomeno strettamente linguistico, relativo a parole o espressioni isolate. Piuttosto, essa coinvolge il modo in cui interi domini concettuali vengono strutturati sul modello di altri, dunque concerne in generale l'organizzazione del sistema concettuale: si è parlato perciò di una teoria concettuale della metafora. Si prendano a esempio espressioni come «un'idea luminosa», «vedo cosa vuoi dire», «un'esposizione chiara del problema» ecc. Le parole in corsivo sono chiaramente metaforiche, ma c'è un'ovvia relazione tra di esse; tutte provengono dal dominio della visione e sono qui impiegate per esprimere concetti della sfera mentale. Lakoff e Johnson [1980], ai quali dobbiamo le principali elaborazioni in questo ambito, hanno sostenuto che una metafora è appunto una simile correlazione sistematica tra due domini, detti rispettivamente dominio origine (source domain) e dominio bersaglio (target domain). Il fatto che si possano adoperare le parole che provengono dal dominio origine per parlare del dominio bersaglio non sarebbe che una manifestazione superficiale del fatto che il dominio bersaglio è concettualmente organizzato sul modello del dominio origine.

In pratica si determina una serie di correlazioni tra caratteristiche dei due domini, le quali consentono di concepire sistematicamente l'uno nei termini dell'altro. Ad esempio, la metafora LA RABBIA È IL CALORE DI UN FLUIDO (Lakoff e Johnson usano la forma generale IL DOMINIO BERSAGLIO È IL DOMINIO ORIGINE per rappresentare le metafore che analizzano) prevede le seguenti correlazioni:

origine: CALORE DI UN FLUIDO

contenitore calore di un fluido gradi di calore

pressione nel contenitore agitazione del liquido che bolle

limiti di resistenza del contenitore

esplosione

bersaglio: RABBIA

corpo rabbia

> gradi della rabbia pressione esperita

agitazione esperita capacità di contenere la rabbia

perdita del controllo

In questo approccio, la dimensione dell'esperienza percettiva/corporea è chiamata in causa in due modi diversi. In primo luogo, si assume che il meccanismo della proiezione metaforica serva innanzitutto per dare un'organizzazione ai domini concettuali più astratti. Infatti cogliere le regolarità di esperienza nel dominio dei fenomeni percettivi/motori appare più facile ed immediato: il

problema è invece come afferrare relazioni più astratte, relative ad entità non direttamente osservabili. È qui che la metafora concettuale presta il suo soccorso: domini concettuali già organizzati, di natura percettivo/motoria, servono come modelli per strutturare domini astratti. Si tratta dello stesso meccanismo che secondo alcuni studiosi è all'opera nella scoperta scientifica. Si pensi, per un esempio elementare, alla teoria delle onde sonore: come immagine «origine» viene adottata quella delle onde prodotte sulla superficie di un liquido dalla caduta di un corpo; quindi si prova a supporre che la maniera di propagarsi delle onde sonore abbia caratteristiche comuni con quelle del propagarsi delle onde in un liquido, ed eventualmente si «cancellano» quelle proprietà che alla prova non risultassero condivise [Hesse 1966]. Ma l'esperienza percettivo/motoria può entrare in gioco anche in un secondo modo: nel determinare le correlazioni che rendono possibile la proiezione metaforica. Si prenda ad esempio la metafora IL TEMPO È (LO SCORRERE DI) UN FIUME. Il dominio origine, lo scorrere del fiume, corrisponde ad una semplice esperienza percettiva, che però nel caso specifico è associata a (anzi inseparabile da) l'esperienza soggettiva dello scorrere del tempo: mentre il fiume scorre, il tempo trascorre. Questa associazione d'esperienza tra dominio bersaglio e dominio origine costituisce una forte motivazione ad organizzare l'uno sul modello dell'altro. In generale, lo stabilirsi della correlazione sembra dipendere essenzialmente dalla capacità di formare uno schema astratto comune ai due domini, quello che Lakoff e Johnson hanno chiamato schema d'immagine (ingl. image schema). Esempi classici di schemi d'immagine sono SU-GIÙ o DENTRO-FUORI, da intendere non come relazioni spaziali in quanto tali bensì appunto come schemi astratti che strutturano anche vari domini nella sfera mentale e sociale

3.2. Comprensione on-line del linguaggio

Alla teoria concettuale della metafora è stato rimproverato di fornire una spiegazione parziale del suo oggetto. In particolare, tale approccio sarebbe efficace nel cogliere la struttura concettuale delle metafore «catacresizzate» (ossia convenzionalizzate, morte) ma sarebbe insufficiente a rendere conto dei processi metaforici colti nel vivo: dunque delle cosiddette metafore fresche. Questo ci pone più in generale di fronte alla questione dei processi «occorrenti» (attuali) di comprensione del linguaggio: in che modo i parlanti si rappresentano il significato di un particolare enunciato? In che modo, in un concretto atto di comprensione, usano le conoscenze depositate nel sistema concettuale?

Gilles Fauconnier [1985] ha proposto un modello che consentirebbe di catturare alcuni aspetti della comprensione occorrente, relativi in particolare alla struttura degli stati di cose descritti ed alla loro collocazione in stati epistemici del parlante. (Per stati epistemici si intende quel genere di stati mentali che coinvolgono un atteggiamento epistemico verso il contenuto: il fatto che il contenuto sia giudicato vero in generale o in qualche contesso particolare, oppure solo immaginato, ipotizzato, negato ecc.). La nozione chiave è quella di spazio mentale: in sostanza, uno schema figurale in cui è rappresentato lo stato di cose descritto dall'enunciato. L'idea di fondo è che i parlanti producano, nell'atto di comprendere un enunciato, uno spazio-base che rappresenta la realtà presente condivisa dagli interlocutori; ed eventualmente spazi mentali ulteriori, che rappresentano stati di cose possibili, o dislocati temporalmente (passati o futuri), contesti di finzione, giochi, stati di cose negati ecc.

Ad esempio, un enunciato come Nel 1770, la Francia era una monarchia esige che si produca uno spazio mentale relativo all'anno 1770, il quale sta in un certo rapporto (di dislocazione temporale) rispetto allo stato presente. Oppure, per l'enunciato Nella foto, lei ha i capelli neri dobbiamo costruire uno spazio mentale relativo ad un contesto specifico, quello di una certa foto. Un enunciato può anche attribuire proprietà diverse ad un unico oggetto, che risulterebbero contraddittorie se rappresentate in un medesimo modello, come nell'esempio Nel 1929, la signora con i capelli bianchi era bionda. Qui è evidente la necessità di operare contemporaneamente con due distinti spazi mentali, uno per lo stato attuale ed uno per quello passato. Ma gli spazi mentali di Fauconnier possono essere adoperati anche per rappresentare le diverse interpretazioni di enunciati ambigui, in fenomeni come l'alternanza tra uso specifico/non specifico degli indefiniti, o tra usi referenziali/attributivi. Un esempio del primo fenomeno è Mario vuole una Fiat Punto, che può essere rappresentato in due diversi modi (vedi fig. 3.1):

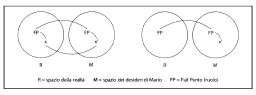


fig. 3.1. Gli spazi mentali di Fauconnier.

Nel primo caso, al ruolo astratto «FP» corrisponde nel mondo reale un particolare esemplare («x»), ed è proprio quell'esemplare che Mario desidera (più esattamente, esso è il correlato dell'oggetto che si trova nel mondo dei desideri di Mario). Nel secondo caso, nel mondo reale non c'è un esemplare particolare che corrisponda all'oggetto del desiderio di Mario: il suo è desiderio di un esemplare qualsiasi di Fiat Punto.

Un esempio di enunciato che ammette lettura referenziale/attributiva è: Edipo voleva sposare sua madre. Nella lettura referenziale (detta anche trasparente). l'enunciato fa l'affermazione vera che Edipo intendeva sposare una donna che di fatto era sua madre (ma non si assume che lui lo sapesse), nella lettura attributiva (detta anche opaca), l'enunciato fa l'affermazione falsa che Edipo intendeva sposare una donna che sapeva essere sua madre. Per rendere conto della differenza semantica, si procede nel seguente modo. Nella lettura attributiva, un certo individuo (Giocasta) è correlato al ruolo «madre di Edipo» non solo nel mondo reale, ma anche nel mondo delle credenze di Edipo. Nella lettura referenziale, al contrario, Giocasta è correlata al ruolo «madre di Edipo» nel mondo reale, ma na no ni nuello delle credenze ci Edipo.

Come si vede, gli spazi mentali di Fauconnier traducono in relazioni figurali solo alcune proprietà strutturali degli enunciati: i significati lessicali delle parole piene (nomi, verbi, aggettivi) non vengono analizzati. Comunque, negli ultimi anni la teoria degli spazi mentali è stata sviluppata in una direzione che ha conseguenze anche per l'analisi delle metafore. Si tratta delle riflessioni sviluppate intorno alla nozione di fusione concettuale (ingl. conceptual blending). L'idea di fondo è che non soltanto la comprensione di enunciati può comportare la costruzione di più spazi mentali coesistenti, inoltre questi talvolta devono interagire tra loro: si produce uno spazio unitario nel quale convergono proprietà in origine distribuite su spazi distinti. Quest'idea consente di recuperare un'intuizione sottesa alla teoria interattiva della metafora [Black 1979], secondo cui le metafore sono uno strumento di comprensione in quanto producono configurazioni concettuali nuove, non riducibili ad una semplice messa in correlazione tra gli elementi originari. Il fenomeno della fusione concettuale sarebbe tanto più evidente quanto più la metafora è nuova, mentre tende a svanire mano a mano che essa si convenzionalizza. (L'analisi della metafora in termini di fusione concettuale è stata elaborata specialmente in Coulson [2000] e Fauconnier e Turner [2002].)

La teoria della fusione concettuale può dunque integrare la teoria concettuale della metafora di Lakoff e Johnson: quest'ultima individua la struttura concettuale stabile sottostante alle metafore morte, la prima rende conto dei processi occorrenti di comprensione delle metafore vive, Gibbs [1994], in ogni modo, ha gettato un ponte tra le due dimensioni, evidenziando il ruolo potenzialmente creativo delle metafore concettuali descritte da Lakoff e Johnson. Innanzitutto, Gibbs respinge l'idea che una metafora morta sia riducibile ad una forma di polisemia: ad esempio, che il verbo vedere abbia semplicemente diversi significati, tra cui quello di COMPRENDERE, Fin qui, siamo nell'ortodossia della teoria concettuale: le metafore non vanno comprese come fenomeni lessicali isolati, bensì coinvolgono le relazioni tra domini concettuali. È però interessante la motivazione di Gibbs: la tesi della polisemia ci nasconde l'esistenza di una generale strutturazione metaforica dell'esperienza, che resta disponibile sullo sfondo e può essere rivitalizzata in ogni momento per produrre metafore nuove. In altri termini, secondo Gibbs è stata sottovalutata la capacità delle metafore concettuali di suggerire e insieme vincolare la produzione di metafore fresche. Diversamente, non si spiegherebbe «perché nella storia delle lingue indoeuropee gli stessi cambiamenti di significato ritornino di continuo» [ibidem, Ad esempio, la metafora concettuale COMPRENDERE È VEDERE non è per Gibbs che un caso particolare della più generale metafora LA MENTE COME CORPO, depositata nella memoria collettiva dei parlanti delle lingue indoeuropee, e che funge da modello per produrre (e comprendere) nuove combinazioni metaforiche. Queste nuove metafore potrebbero provocare un processo occorrente di fusione concettuale nel senso di Fauconnier e Turner [2002], il che spiegherebbe la maggiore vivacità e ricchezza di effetti cognitivi rispetto alle forme già convenzionalizzate.

Il tema della comprensione delle metafore solleva una questione che è stata ed è tuttora oggetto di vivace dibattito, quella dell'esatta articolazione della componente semantico-lessicale e di quella pragmatico-contestuale. La pragmatica filosofica, a partire da Grice, aveva suggerito che l'interpretazione degli enunciati non letterali, metafora inclusa, dovesse passare attraverso un processo a due stadi: dapprima il destinatario decodificherebbe il puro significato lessicale, quindi constatando la sua inadeguatezza ricorrerebbe ad inferenze basate sul contesto e sulle conoscenze di sfondo. Questo modello filosofico ha orientato anche la ricerca empirica fino ad una decina d'anni fa, quando hanno cominciato ad affermarsi alcuni nuovi approcci. Sono stati determinanti in tal senso i test di misurazione dei tempi di comprensione: gli enunciati non letterali non sembrano richiedere per essere compresi tempi più lunghi di quanto facciano quelli letterali, come invece ci si attenderebbe se il modello di Grice fosse corretto. In conseguenza di ciò, è ormai in discredito la tesi che la comprensione degli enunciati non letterali comporti la precedente individuazione del significato letterale, più qualche ulteriore processo pragmatico-inferenziale [Gibbs 1994; Glucksberg 2004]. Ma questo non dice ancora quale sia il modello corretto per la comprensione delle metafore.

Un'ipotesi che è stata avanzata è quella secondo cui un medesimo processo di tipo pragmatico-inferenziale sarebbe all'opera nell'interpretazione di enunciati sia letterali sia non letterali. (Anche se di per sé, come ha osservato ancora Gibbs [1994], il fatto che i tempi di elaborazione siano analoghi non assicura che i processi sottesi siano dello stesso tipo.) Ouesta visione radicalmente pragmatica dell'interpretazione è caratteristica degli approcci che si richiamano alla teoria della mente, come nelle più recenti formulazioni della teoria della pertinenza di Sperber e Wilson (cfr. infra, § 4.1). Alla proposta di Sperber e Wilson si ricollega esplicitamente lo studio di Happé [1993] su soggetti autistici. La sua tesi è che soggetti normali ed autistici ricorrano a processi differenti nella comprensione dei messaggi linguistici: i secondi, mancando di una teoria della mente, farebbero ricorso a mera decodifica, e per questo i significati non letterali sarebbero spesso inaccessibili per loro: i soggetti normali invece farebbero uso di procedimenti inferenziali di natura pragmatica, indifferentemente nel caso di enunciati letterali o non letterali

Tuttavia bisogna capire bene cosa comporta l'idea che non sia necessario passare per la decodifica del significato letterale, e che in tal senso il processo sia essenzialmente pragmatico. Certamente non può significare che il contenuto lessicale non svolga alcun ruolo: al contrario, viene riconosciuto che esso è parte integrante dell'informazione a cui il destinatario ricorre per inferire le intenzioni comunicative del mittente. In pratica, il vero oggetto del contendere sembra

quello dell'ordine temporale dei processi lessicali versus contestuali (anche se, come vedremo, ciò potrebbe non valere per la teoria di Sperber e Wilson). Una volta acquisito che i parlanti non hanno bisogno di passare attraverso la completa elaborazione del significato letterale prima di prendere in considerazione l'informazione contestuale, rimagnon aperte alcune opzioni. Una è quella che è stata chiamata l'ipotesi dell'accesso diretto (direct access view), secondo cui il precoce ricorso ad informazione contestuale avrebbe l'effetto di inibire (in parte) l'elaborazione del significato letterale (Vu, Kellas e Paul 1998; 2000). Secondo una versione più moderata, il significato letterale verrebbe attivato anch'esso ma sarebbe pur sempre il significato inteso (quello non letterale) a raggiungere per primo un livello sufficiente di attivazione (Gibbs 1994). Una terza ipotesi, esplorata da Peleg, Giora e Fein [2004], consiste nel supporte che vi siano due processi indipendenti e paralleli che elaborano rispettivamente l'informazione lessicale e quella contestuale, col risultato che l'una o l'altra possono prevalere a seconda delle possizione dell'elemento-nella frase.

Abbiamo dunque analizzato la comprensione del linguaggio come un fenomeno di integrazione delle informazioni, sotto due diversi aspetti:

- la costruzione di spazi mentali che catturano certe relazioni strutturali nella frase, e più in particolare la fusione concettuale tra spazi mentali propria delle metafore fresche:
- i modi e tempi dell'integrazione di informazioni lessicali e contestuali.

3.3. L'organizzazione semantico-concettuale della frase

Ma, al di là del fatto di poter esprimere uno stesso contenuto di verità in forme diverse, lo studio della concettualizzazione si è sempre più configurato come un progetto generale di analisi della produzione/comprensione degli enunciati in termini di costruzioni mentali soggettive. Vengeno rianalizzate in quest'ottica anche nozioni tradizionali - come quelle di metalora, metonimia ecc. – mo-

strando come esse consentano di costruire il significato in funzione del punto di vista soggettivo. Ad esempio la metonimia è vista come un caso particolare dei fenomeni di attenzione/salienza. nei quali l'attivazione del significato è prodotta in maniera fortemente selettiva: quando diciamo Mi trovi sull'elenco telefonico chiediamo al destinatario di focalizzare l'interpretazione del pronome mi su un aspetto specifico delle informazioni che ci riguardano (il numero di telefono), e questo è analogo al caso di enunciati come Il Corriere costa un euro, Il Corriere ha un'ottima redazione, Il Corriere non è stata obiettivo in cui vengono selezionati aspetti differenti nel significato di Il Corriere (rispettivamente l'oggetto materiale costituito da una copia, il zaienda che produce quell'oggetto, il contenuto informativo dell'oggetto). (Per questi fenomeni, si veda Croft e Cruse [2004]).

In linea con la generale attenzione alla dimensione percettiva dell'esperienza, lo studio della concettualizzazione ha dedicato ampio spazio alle proprietà figurali: in particolare, ma non solo, al sistema delle particelle spaziali (preposizioni/avverbi). Sono stati analizzati numerosi effetti di costruzione soggettiva dello spazio: effetti di granularità (vedi la differenza tra la strada nel bosco e la strada attraverso il bosco, con la seconda espressione che porta l'attenzione più analiticamente sull'attraversamento della vegetazione; cfr. Talmy [1983]); effetti di attenzione dinamica [Langacker 1987], come la scansione sequenziale/sommaria di un evento (rispettivamente rappresentate da il ponte crollò versus il crollo del ponte), o il movimento fittizio come in la strada si inerpicava sulla collina [Talmy 2000]; effetti di figura-sfondo, come nel contrasto tra la casa vicino al fienile e il fienile vicino alla casa e così via. Quest'ultimo esempio consente di introdurre un altro tipico tema degli studi sulla concettualizzazione: quello dei vincoli cognitivi generali che operano sui processi di costruzione del significato. Infatti, non in tutti i casi la relazione figura-sfondo può essere rovesciata come lo è nell'esempio precedente: si dice la bicicletta vicino alla casa, ma non la casa vicino alla bicicletta. Secondo Talmy [ibidem] vi sono alcuni parametri che determinano quale elemento possa costituire lo sfondo (nel nostro esempio, la casa ma non la bicicletta); locazione più nota (versus meno nota), dimensioni maggiori, posizione stazionaria (versus mobile) ecc.

Proprioperchésono ingioco i processi di produzione/comprensione in generale, gli esempi potrebbero essere moltiplicati: lo studio della concettualizzazione tende a coprire l'intera gamma dei fenomeni di organizzazione semantica della frase. Ci limitiamo pertanto ad un ultimo esempio che consente di fare una considerazione di fondo: il modello della dinamica delle forze (forze dynearic model) [Talmy 1976; 2000]. L'idea è che la struttura predicato-argomenti sia riconducibile ad uno schema concettuale modellato sulla nozione di causazione: chi causa quale effetto su quale oggetto (con quali strumenti). Ossia, la struttura soggetto – oggetto – argomenti obliqui che i predicati impongono alla frase non sarebbe che la manifettazione grammaticale di quello schema concettuale sottostante [Croft 1991]. Ciò esemplifica in che modo la semantica cognitiva potrebbe catturare, in termini di processi di costruzione concettuale, i principi generali dell'organizzazione sintattica della frase.

4. SINTASSI COGNITIVA

È venuto il momento di affrontare quello che rappresenta il sommovimento più radicale, all'interno del generale slittamento di paradigma teorico che siamo andati delineando. Non soltanto la linguistica cognitiva ha portato i propri interessi sulla semantica e sul sistema concettuale, abbandonando la descrizione sintattica come praticata nel paradigma chomskiano. In più, essa ha avvisto un profondo ripensamento della maniera di concepire la sintassi. Per renderne conto dobbiamo toccare due diversi tenie quello che possiamo designare (in senso generico) con l'espressione «sintassi basata su costruzioni», e che consentirà di chiarire la tesi secondo cui il confine tra sintassi e lessico svanisce; e il terna della sintassi basata sull'uso. Se il primo tema concerne essenzialmente il modo in cui rappresentamo mentalmente la competenza sintattica, il secondo riguarda soprattutto i processi di acquisizione, implementazione ed uso di quelle rappresentazioni.

4.1. La sintassi basata su costruzioni

Useremo l'espressione «sintassi basata su costruzioni» come etichetta generica per indicare una famiglia di posizioni che condividono alcuni caratteri. Storicamente la riflessione su questo tema ha le sue radici, di nuovo, in alcuni studi di Fillmore (già segnalato per il ruolo fondativo che ha avuto in semantica cognitiva) a proposito delle espressioni idiomatiche (idioms). Forse è eccessivo dire che queste costituivano un problema teorico evidente per la grammatica generativa. In definitiva, vi era una soluzione standard che consisteva nel trattarli come un fenomeno lessicale: ossia nell'assumere che un'espressione idiomatica non dovesse essere calcolata mediante i normali processi di composizione sintattica e semantica, bensì semplicemente codificata come una voce lessicale unitaria. «Acqua in bocca», poniamo, è un'espressione che comprendiamo come un tutto, senza analizzarla nelle sue componenti. Ma questa soluzione lasciava trasparire una difficoltà. Un conto è «acqua in bocca» un altro, poniamo, «essere al verde»: qui c'è un verbo che va regolarmente coniugato, dunque non proprio un tutto inanalizzabile. Fillmore, Kay e O'Connor [1988] mostrano che la questione è generale: il fenomeno dell'idiomaticità presenta una gamma di manifestazioni che vanno dalle espressioni del tutto rigide e non analizzate, a casi via via meno vincolati e dunque più vicini alla generalità delle regole sintattiche. Se «essere al verde» ha già un uso più flessibile di «acqua in bocca», «mangiare la polvere» mostra aspetti di flessibilità ancora maggiori: possiamo trasformarlo ad esempio in «far mangiare la polvere a X» (l'analogo con «essere al verde» non è permesso), forma nella quale peraltro c'è una variabile (la «X») da riempire con materiale lessicale vario. In altri casi, la proporzione tra il materiale che rimane invariato e gli elementi variabili è ancor più spostato a favore dei secondi. Un esempio classico è quello della forma manifestata dall'idiom inglese «the bigger they come, the harder they fall». Tale forma è anche utilizzata come schema per produrre

ulteriori enunciati quali «the more vou practice, the easier it will get», «the louder you shout, the sooner they will serve you» ecc. Qui l'elemento invariato è appena la struttura generale costituita da articolo+ aggettivo superlativo+ frase, ripetuto due volte: mentre il materiale lessicale è interamente variabile. Si noti che, tra l'altro, il risultato non rispetta le regole grammaticali standard per la formazione di frase: abbiamo a che fare con un dispositivo a suo modo idiosincratico, e che tuttavia è capace di generare nuove espressioni in modo (localmente) regolare. È questo intreccio tra regolarità e idiosincraticità che costituisce una vera mina vagante per la grammatica generativa. Un principio indiscusso di quell'approccio era la netta separazione tra fenomeni idiosincratici consegnati al lessico e regolarità sintattiche. Sennonché qui emerge una gamma di fenomeni che stanno a cavallo tra le due dimensioni. Ma c'è di peggio: una volta acquisito questo fatto, è la natura stessa delle regole sintattiche che appare sotto una nuova luce. Abbiamo già introdotto un caso in cui un idiom consente di generare nuove espressioni, variando a piacere il materiale lessicale contenuto: è il caso di «the bigger...». Si tratta di una formula, come osservato, che appare scarsamente integrata nella generale struttura grammaticale della lingua. Vi sono però altri casi in cui l'impressione di grammaticalità è certo maggiore. Un esempio ben studiato è quello della costruzione ditransitiva. Si considerino le seguenti alternanze [Goldberg 2003]:

- (1a) Liza bought a book for Zach.
- (1b) Liza bought Zach a book.
- «Liza ha comprato un libro per/a Zach.» (2a) Liza gave a book to Zach.
 - (2b) Liza gave Zach a book.
- «Liza ha dato un libro a Zach » (3a) Liza sent a book to Zach.
- (3b) Liza sent Zach a hook

Ossia, la lingua inglese qui ammette sia (a) la costruzione normale in cui il complemento obliquo segue quello diretto ed è introdotto da preposizione, sia (b) una costruzione alternativa (detta «doppio accusativo») in cui il complemento obliquo, non introdotto da preposizione, precede il complemento diretto. Il secondo tipo di costruzione, sebbene meno generale del primo, è considerato del tutto standard. Nondimeno, esso è soggetto a restrizioni curiose sotto il profilo sintattico, come la seguente:

- (4a) Liza sent a book to Zach
- (4h) Liza sent Zach a hook
- «Liza ha spedito un libro a Zach.» (5a) Liza sent a book to storage.
- (5b) "Liza sent storage a book.

«Liza ha spedito un libro al deposito.»

«Liza ha spedito un libro a Zach.»

Ritroviamo dunque elementi di idiosincraticità in una costruzione relativamente standard. Soprattutto, quello che comincia ad apparire evidente è che le forme sin tattiche più regolari non sono che un caso estremo all'interno di un continuum

idiosincraticità-regolarità: quello che è stato battezzato il continuum lessico-sintassi. Ma quest'idea, e la nozione di costruzione che porta con sé, comportano un rivolgimento teorico la cui portata deve essere chiara. Il punto cruciale del nuovo paradigma è che le strutture linguistiche ammettono un'unica modalità di rappresentazione lungo tutto il continuamo, costituita da schemi mentali «dello stesso tipo di quelli che troviamo in altri domini della cognizionea [Tomasello 1998]. A questo genere di rappresentazioni si è dato il nome di «costruzioni», tradizionalmente impiegato per indicare forme sintattiche non del tutto standard che tuttavia si applicano in modo regolare negli opportuni contesti. In pratica, le costruzioni sono adesso concepite come schemi mentali che catturano regolaria nella distribuzione sintattica, indipendentemente dalfatto che ciò che è regolare sia un'espressione che rimane invariata in ogni suo aspetto (idioms come acqua in bocca), oppure un'espressione in cui alcuni elementi sono variabili destinate ad essere riempite da materiale lessicale vario; o infine forme costituite interamente da variabili. Per intenderci, anche una regola come:

$$F \rightarrow SN - SV$$

deve essere reinterpretata come uno schema, non qualitativamente diverso da quello che cattura l'espressione «acqua in bocca», solo massimamente astratto rispetto al materiale lessicale che può assumere.

Qui due aspetti in particolare vanno sottolineati. Primo, affermare che le regole sintattiche analizzate dalla grammatica generativa non sono in realtà che schemi di distribuzione massimamente astratti comporta, sotto il profilo dei processi cognitivi implicati, la scomparsa di ogni separazione modulare tra sintassi e lessico. In un senso, i processi di recupero dell'informazione lessicale e quelli di attivazione di una regola sintattica appaiono essere del medesimo tipo. Secondo. nell'ipotesi che le regole sintattiche siano costruzioni è implicita un'ulteriore assunzione che le avvicina al lessico. Si tratta dell'assunzione secondo cui tutte le entità del continuum, dalle singole voci lessicali alle regole più astratte, vanno concepite come «segni saussuriani»: ossia come entità a due facce, costituite da una forma e una funzione (ossia un significato). La forma (semplificando un bel po') sarà una sequenza di fonemi nel caso delle singole voci lessicali: sarà invece una sequenza di ruoli sintattici nel caso delle costruzioni più astratte: saranno infine forme miste (materiale fonologico fisso+ posti per ruoli sintattici) nei casi intermedi (vedi l'esempio di «far mangiare la polvere a X»). Ma soprattutto, tutte le entità del continuum saranno dotate di significato. Se questo è ovvio per voci lessicali e idioms puri, lo è molto meno per le regole sintattiche. Uno dei terreni di indagine propri dell'approccio construction-based consisterà precisamente nell'analisi dei (supposti) corrispettivi semantici delle costruzioni. Un esempio è quello delle costruzioni ditransitive richiamate sopra: Goldberg [1995; 2003] ne propone un'articolata analisi basata sulla nozione di TRASFERIMENTO. Si può ricondurre al medesimo principio teorico l'ipotesi (citata sopra) secondo cui la struttura astratta degli argomenti del predicato (soggetto – oggetto – argomenti obliqui) ammette di essere interpretata come il corrispettivo di una struttura semantica, costituita dal force dynamic model di Talmy [1976; 2000].

Croft e Cruse [2004, 266] elencano quattro distinte varianti teoriche del generale approccio qui delineato: la Construction Grammar di Fillmore e Kay: il modello di Lakoff/Goldberg; la Cognitive Grammar di Langacker; la Radical Construction Grammar dello stesso Croft [2001]. Ma la cerchia degli studiosi che lo condividono almeno in parte è molto più ampia, e va crescendo. Tra questi merita certamente di essere citato Rav Jackendoff, linguista che ha dato contributi di primissimo piano alla costruzione della grammatica generativa (specie nel campo della sintassi X-Barra), ma ha anche compiuto esplorazioni di grande rigore in altri campi (semantica concettuale in primo luogo). Recentemente egli ha proposto un modello generale del linguaggio di notevole equilibrio teorico [Jackendoff 2002], in cui sono accolte le principali istanze della sintassi basata su costruzioni ma con alcune significative differenze. Soprattutto, Jackendoff sostiene che il linguaggio sia costituito da un certo numero di componenti (tiers) autonome, che solo parzialmente sono in regime di isomorfismo tra loro: ad esempio, non a tutte le forme sintattiche corrispondono biunivocamente funzioni semantiche associate (non tutte dunque sono costruzioni nel senso visto sopra). Per lackendoff una entrata lessicale è una struttura codificata in memoria che mette in registro tra loro le forme linguistiche a tutti i differenti livelli.

4.2. La sintassi basata sull'uso

Il modello della sintassi basata su costruzioni, tra l'altro, spinge con forza a rimettere in discussione certe tesi chomskiane circa la dimensione individuale e sociale delle lingue.

Partiamo dalla questione dell'apprendimento individuale. Abbiamo detto che le regole sintattiche sono rappresentate mediante strutture cognitive dello stesso genere delle voci lessicali, o se è per questo, di gran parte delle nostre conoscenze. Come le voci lessicali, esse sono correlazioni di forme e funzioni semantiche: come gran parte delle postre conoscenze, sono configurazioni schematiche (patterns). Inoltre, non vi è alcun confine netto tra voci lessicali e regole astratte. Tutto ciò suggerisce che sia possibile apprendere le regole sintattiche nella medesima maniera in cui apprendiamo le parole: attraverso l'esperienza individuale. Questa tesi è stata sostenuta esplicitamente, ad esempio da Tomasello [2003]. Come è evidente, si tratta di una radicale inversione di marcia rispetto all'innatismo chomskiano, e di una sfida frontale all'argomento della povertà dello stimolo: Tomasello [ibidem, 288-289] cita studi tesi a sollevare dubbi sulla validità di quest'argomento (mentre da parte chomskiana permane la convinzione che esso sia supportato da un'evidenza empirica inattaccabile). Tomasello [ibidem, 3-4] argomenta inoltre che la tesi dell'apprendimento dall'esperienza può ricevere oggi una formulazione più sofisticata che in passato, tale da prevenire alcuni difetti tradizionali. In particolare, l'apprendimento non sarebbe più concepito in termini di semplici associazioni e di induzione cieca: ovvero, come la mera capacità di registrare co-occorrenze regolari di stimoli ambientali. Al contrario, nell'apprendimento del lessico sintassi svolgerebbe un ruolo cruciale la capacità di lettura della mente (o lettura delle intenzioni, o facoltà di mentalizzazione: la terminologia è piuttosto instabile, cfr. cap. 1, § 4.1): la capacità di interpretare l'agire comunicativo come guidato dagli interessi, desideri, intenzioni, credenze ecc. dei parlanti. In tal modo l'apprendimento del lessico-sintassi verrebbe a dipendere largamente da una capacità pragmatica, relativa cioè alla relazione tra gli enunciai e il loro uso in contesto.

In generale, il paradigma chomskyano separava drasticamente i fenomeni del possesso delle strutture sinattiche e del loro uso. Possediamo la sinassi dalla nascita, si sosteneva, e l'esperienza serve solo a selezionare i parametri giusti: dunque, l'uso in generale non modifica la grammatica, è semplice performance che non incide sulla competence. Al contrario, emerge adesso la tesi di uno stretto legame tra le due componenti. Si parla in tal senso di sintassi basata sull'uso (usage-based), con riferimento a due aspetti differenti: il ruolo, rispettivamente, della frequenza d'uso e dei fenomeni pragmatici nella codifica delle entità linguistiche.

La Trequenza d'uso entra in gioco per il fatto che più sono attivati gli schemi cerebrali che rappresentano una parola o costruzione, maggiore è la misura in cui queste parole e costruzioni sono codificate come unità grammaticali convenzionali. Questa tesi ha un paio di conseguenze che si è cercato di testare empiricamente. Una è che le forme di parola sono codificate singolarmente anche qualora possano essere previste in base a schemi grammaticali generali (ad sempio: in vitti della sua frequenza la forma verbale mangno potrebbe essere codificata anche se in linea di principio è derivabile dal paradigma del verbo). Un'altra è che le forme di parola irregolari saranno tra le più frequenti nel lessico (se infatti non lo fossero, non verrebbero codificate e sarebbero presto sostituite da forme regolari). (Per una breve rassegna della letteratura in proposito, si veda Coft e Cruse 12004. 292. 2951.)

Quanto al ruolo dei fenomeni pragmatici, abbiamo detto come questi siano al centro della proposta di Tomasello: intorno ad essi ruota la sua ricostruzione dell'acquisizione dell'acquisita di materia dell'acquisita di afterarene i significati (ed anzi il fatto stesso di interessarsi ad esse dipenderebbe dalla capacità di interagire con gli adulti all'interno di «comici di attenzione condivisa» (pondi actentional frames): sequenze di azioni rivolte su oggetti esterni che il hambiono consapevole di condividere con altri soggetti. In particolare, il bambino piccolo acquisisce di preferenza le parole che svolgono un ruolo nelle routines socio-culturali che strutturano la sua esperiernza e le sue relazioni. Ma come si passerebbe dalle parole isolate alle frasi sintatticamente organizzate? Ferma restando l'influenza dei fattori pragmatici, qui svolge un ruolo cruciale la nozione di costruzione. L'idea è che vi sia una transizione graduale da forme più «locali», ossia di scarsa generalità e che presentano un forte legame con l'esperienza, a forme più generali. La prima tappa che l'omasello individua è quella dei privos schemas: costruzioni del tipo di

«Where's_?», o «More_!», nelle quali il trattino sottoscritto può essere riempito da materiale lessicale vario (qui, nomi comuni o propri), e con un evidente aggancio a situazioni tipiche della vita del bambino (cercare un oggetto/una persona; chiedere ancora un po' di qualcosa). A questi seguirebbero le costruzioni item-based, di cui il caso più generale ed interessante sono le costruzioni verb-island: l'idea è che di nuovo, come nel caso dei pivot schemas, le espressioni siano costruite aggiungendo materiale lessicale variabile intorno a una voce lessicale fissa (un item), solo che questa adesso può essere modificata da marcatori sintattici. Ad esempio nel caso delle costruzioni verb-island, in cui l'elemento fisso è una voce verbale, quest'ultima va conjugata. Il passo successivo può essere individuato nella costruzione di categorie astratte- poniamo, quella di verbo in sostituzione delle singole voci verbali - tramite un processo che Tomasello [ibidem, 172] chiama di analisi distribuzionale basata sulla funzione.

Un paio di osservazioni al riguardo. Primo, poiché in questo quadro le categorie sarebbero costruite per astrazione dall'esperienza, il grado di generalità raggiunto dipenderebbe dal fatto che vi siano effettivamente, e che siano riconosciute, certe regolarità nei patterns sintattici. Ad esempio, Tomasello richiama l'ipotesi di Croft [2001] secondo il quale la nozione generalizzata di soggetto viene appresa molto tardi perché in realtà essa esige che si riconoscano alcune caratteristiche molto astratte comuni ad una serie di costruzioni differenti: fino a quel momento, il bambino possiederebbe piuttosto differenti nozioni di soggetto per le differenti costruzioni implicate. Secondo, nella misura in cui l'obiettivo è la formazione di categorie funzionali (Tomasello parla infatti di analisi distribuzionale basata sulla funzione) è evidente che non si tratta di analisi distribuzionale in un senso pre-chomskiano. In altri termini, il punto è individuare non la distribuzione lineare delle parole, bensì quella strutturale delle categorie grammaticali. E questo implica un principio di gerarchizzazione, su cui non a caso i teorici delle costruzioni hanno insistito [Tomasello 2003, 105 ss.; Goldberg 1995; Croft 2001]. La gerarchia tra i patterns lessicali-sintattici ha un duplice ruolo. Innanzitutto. garantisce il meccanismo a scatole cinesi che abbiamo visto essere indispensabile per una sintassi capace di generare le infinite frasi possibili: se ad esempio lo schema per la frase presenta, in una certa posizione, un sintagma nominale, occorre poi un certonumero di patterns che dicano quali forme possono assumere i sintagmi nominali, e così via per i livelli successivi. Inoltre, la struttura gerarchica (che Tomasello [2003, 196] preferisce etichettare multi-dimensional network) consente di integrare informazioni generali ed idiosincratiche. Ad esempio sotto lo schema generale per i verbi transitivi troveremo schemi per i singoli verbi di questa categoria, così da rendere conto dei loro comportamenti sintattici peculiari (alcuni verbi, supponiamo, possono presentare indifferentemente la costruzione col doppio accusativo accanto a quella più standard, mentre altri no). O ancora sotto un singolo verbo transitivo, diciamo turare, può essere specificata una particolare costruzione idiomatica, ad esempio «tirare le cuoia»: così che per un verso tale espressione erediterà il significato dalla struttura generale di cui è esempio (qualcuno tira qualcosa), dall'altro avrà un significato specifico che le appartiene in proprio.

Il punto appena toccato ha una conseguenza interessante: poichéogni livello del multi-dimensional network è portatore di un significato proprio, combinazioni atipiche possono produrre incontri di significati (moderatamente) conflittuali, con effetti di innovazione ed estensione semantica. Tomasello (1998, 482) propone un esempio basato ancora una volta sul caso della costruzione ditransitiva. Il verbo kick (wdare un calcio», «calciare») non è usato tipicamente in questa costruzione, poiché non ha tipicamente un significato di TRASFERIMENTO. Tuttavia, l'espressione Mary kicked John the football suona abbastanza naturale, e invita a percepire nel verbo kick una sfumatura di significato non standard l'impartire ad un oggetto un movimento direzionato verso un'altra persona. La medesima operazione potrebbe ancora avere successo con un verbo come sneeze («starnutire»), anche se con un (più) evidente valore figurato, mentre tende a risultare ben poco accettabile con smile («sorridere»: ??Mary smiled John the football).

Le considerazioni che precedono circa l'apprendimento e l'uso individuale hanno ricadute anche rispetto alla dimensione sociale e storica delle lingue. Gli approcci usage-based presumono infatti che qui sia in gioco una dinamica tra innovazioni individuali e grammaticalizzazione di alcune tra queste innovazioni. La grammatica generativa non mostrava in generale alcun interesse per i fenomeni diacronici; peggio, la sua cornice teorica rendeva inspiegabili i mutamenti storici della sintassi, che infatti erano semplicemente ignorati. Gli approcci basati sull'uso, al contrario, possono rendence conto ricorrendo a spiegazioni funzionali, basate sulle finalità pragmatiche ed espressive dei parlanti. La tesi ricorrente è che la grammatica di una lingua sia una cristalizzazione della pragmatica, ossia del discorso, degli usi storicamente dati: con le parole di [Givón 1979], ela sintassi di oggi è il discorso di ieri». Tra gli esempi che Givon [2003] fornisce vi sono i seguenti:

- una sequenza di frasi come I believe that: John will wed Mary diventa naturalmente I believe that John will wed Mary, in cui il contenuto della credenza non è più espresso da una frase indipendente bensì da una subordinata oggettiva;
- una infinitiva come I want to buy it può derivare dall'accostamento tra le frasi I want it I buy it:
- una frase complessa contenente una clausola relativa come My boyfriend, who rides horses, bets on them sarebbe il risultato dell'accostamento di My boyfriend... He rides horses... He bets on them; e così via.

In generale, una convenzione sintattica non emerge tutta in una volta, bensì è il frutto di un processo nel corso del quale la forma è progressivamente piegata ad una nuova funzione. Un esempio molto studiato è quello della forma inglese goma come marca sintattica del futuro [Bybee, Pagliuca e Perkins 1994; Givón 2005]. Il punto di partenza è il normale significato spaziale dell'espressione going (che è un presente progressivo), come in l'm going to the store, passando poi attraverso frasi come l'm going (to the store) to buy X, con l'espressione tra parentesi che per concisione tende ad essere sottintesa, il che sollecita lo slittamento del significato dalla dislocazione spaziale a quella temporale, così da arrivare a l'm conna buy X tomorrou.

Nell'innovazione sintattica sono dunque saldati insieme i due fattori che abbiamo riconosciuto all'opera anche nell'apprendimento individuale: la funzione pragmatica, in quanto un'espressione viene adoperata al fine di veicolare contestualmente certi significati; e la frequenza d'uso, nel senso che i significati veicolati di frequente vengono «condensati» in forme convenzionali. La varietà sintattica delle lingue sarebbe dunque un effetto della varietà di esigenze espressive dei parlanti, una volta che queste siano fissate dall'uso. Il ruolo assegnato alla funzione semantica/pragmatica fa sì che si parli di una concezione funzionalista della sintassi.

Un ulteriore elemento di analogia con la sfera dell'apprendimento individuale riguarda la maniera in cui le regole vengono generalizzate. Ciò dipende dai processi, in questo caso collettivi, del loro impiego: una regola non è in sé e dall'inizio generale, piuttosto il suo grado di generalità può estendersi progressivamente con l'uso. Così come il bambino impara ad adoperare inizialmente l'espressione inglese More! in associazione con un nome particolare (ad esempio: More milk!), per poi estenderne l'uso ad un'ampia gamma di nomi, allo stesso modo l'ambito di applicazione di una costruzione in una lingua può estendersi con il tempo: e questa estensione può fermarsi prima o dopo, in funzione di contingenze storiche. Come dice Tomasello [1998, 482] «nessuna costruzione è del tutto generale».

5. PRAGMATICA COGNITIVA

Abbiamo già toccato a più riprese questioni relative alla dimensione pragmatica. Due sono, in particolare, i temi che vale la pena di riprendere brevemente: l'articolazione cognitiva del rapporto tra semantica e pragmatica: e la facoltà di lettura della mente

5.1. Processi pragmatici e semantici

Come osservato (supra, § 2.2), il modello classico di Paul Grice prevedeva che l'elaborazione pragmatica fosse successiva a quella semantica: ossia, il significato inteso dal parlante nel particolare contesto verrebbe inferito dall'ascoltatore solo dopo avere calcolato il significato letterale dell'espressione linguistica. (Ma si veda Saul [2002] per la tesi che non è corretto cercare in Grice una teoria cognitiva della comprensione, come si tende per lo più a fare.) Non si tratta solo della questione dei tempi di elaborazione. In gioco è anche l'idea che in buona sostanza gli enunciati linguistici siano portatori di un significato completo, tale da potere essere giudicato vero o falso, senza bisogno di ricorrere al contesto d'uso se non per due soli aspetti: individuare i referenti delle espressioni deittiche, e risolvere le espressioni ambigue. Un esempio del primo tipo è l'enunciato io sono ferito, che veicola un contenuto completo solo quando si considerino le circostanze

in cui è proferito, in particolare chi lo pronuncia: se non sappiamo questo. non abbiamo un pensiero di cui si possa dire che è vero o falso. Un esempio del secondo tipo è la frase La pianta è sul tavolo, in cui «la pianta» è ambiguo e dunque per comprenderne il senso bisogna inferire dal contesto se si tratti di un vegetale oppure di un disegno. Tolti questi aspetti, il significato letterale sarebbe interamente determinato dalla competenza lessicale/semantica. Solo a questo punto il contesto interverrebbe per consentirci di individuare eventuali significati ulteriori, eventualmente figurati, che il parlante intende nel caso particolare. I casi tipici sono quelli degli enunciati metaforici (Giulietta è un sole). degli atti linguistici indiretti (Potrebbe dirmi che ore sono?), o di enunciati come Fa freddo! detto per indurre qualcuno a chiudere una finestra. In ciascuno di questi casi, l'ascoltatore deve comprendere che il significato inteso dal parlante è differente da quello letteralmente espresso. Nel quadro proposto da Grice, ciò avverrebbe per il fatto che il significato letterale appare poco accettabile: esso violerebbe le cosiddette massime conversazionali, che impongono al parlante di essere pertinente, di dire cose che crede vere, di essere adequatamente informativo, e chiaro. Quando una di queste quattro massime è violata, l'ascoltatore poiché tende ad assumere che il parlante sia razionale – tenta una diversa interpretazione che restituisca senso a quello che viene detto. Così, dato che Giulietta è un sole è palesemente falso l'enunciato viene interpretato metaforicamente. Oppure, dato che Potrebbe dirmi che ore sono? presa letteralmente è una domanda bizzarra (perché dovremmo chiedere a qualcuno se è in grado di dirci l'ora?), la interpretiamo come la richiesta di sapere l'ora.

Abbiamo già osservato (supra, § 2.2) che questo modello è stato messo in crisi quanto ai tempi di elaborazione: tanto per gli enunciati metatorici quanto per gli atti indiretti, le evidenze smentiscono che in generale il significato letterale sia attivato prima di quello non letterale. Anzi non è nemmeno chiaro se il significato letterale sia attivato in tutti i casi, o se piuttosto l'attivazione del significato inteso non ne inibisca il recupero.

Ma anche l'altro aspetto è stato messo in discussione: non sembra che nella determinazione del significato letterale il contesto intervenga solo per assicurare un riferimento ai deittici e disambiguare espressioni polisemiche. Tanto per cominciare, spesso la determinazione del tempo e luogo di proferimento è indispensabile per individuare le condizioni di verità degli enunciati, anche quando non vi siano deittici di tempo e di luogo esplicitamente espressi. Se dico: «piove», bisogna sapere quando e dove l'ho detto affinché l'enunciato abbia un significato univoco. Ma fin qui, è possibile una contromossa semplice: si può sostenere che i fattori tempo e spazio siano elementi obbligatori e sottintesi della struttura (semantica) dell'enunciato. Sennonché. alcuni studiosi sostengono che non vi sia limite di principio alla quantità e al tipo di fattori rilevanti. Ad esempio si afferma – se qualcuno durante una performance di John Smith al piano dice « John plays well», il pensiero espresso sarà qualcosa come John Smith plays the piano well. In altri termini, l'idea è che vi sia un processo di free enrichment (arricchimento libero) mediante cui il contesto contribuisce alla determinazione del significato; e questo processo contribuirebbe a determinare ciò che il parlante dice, e non solo quello che si può inferire da ciò che il parlante dice. Chi sostiene tale posizione tende ad appellaris alle condizioni di vertià vintaire di un enunciato dicendo John plays well non si vuole affermare che un qualsiasi John è in grado di fare bene ciò che il verbo genericamente esprime (si noti che in inglese play è ambiguo, e può significare «giocare», «recitare» o «suonare») si vuol proprio dire che quel John li suona bene il piano. Bianchi [2004] ha suggerito che questa maniera di determinare ciò che l'enunciato effettivamente dice sia quella che conta per cogliere la responsabilità del parlante rispetto alle proprie affermazioni (a differenza da ciò che è solo inferito, e di cui quindi il parlante non è olenamente responsabile).

Il problema, sotto il profilo di un'analisi cognitiva, è che comunque si voglia definire il significato letterale di un enunciato versus quello inteso dal parlante, o ciò che l'enunciato dice versus ciò che si può inferire da esso, potrebbe esservi un elemento di indeterminatezza ineliminabile nel catturare il confine. Vi è un problema di fondo, che si porrebbe anche se identificassimo il significato dell'enunciato con la semplice composizione dei significati convenzionali dei suoi elementi espliciti: la nozione stessa di convenzione qui presupposta è sfumata e (relativamente) idiosincratica. Non esiste una convenzione univoca e condivisa da tutti i parlanti per ciascuna espressione linguistica: esiste una pluralità di catene di convenzioni che i parlanti si trasmettono in modo locale, parzialmente convergenti ma anche parzialmente difformi. Inoltre, non sempre è chiaro se un dato uso sia guidato da una convenzione o se viceversa sia prodotto «al volo» in funzione delle circostanze. Si pensi al caso di una metafora non del tutto fissata: chi la produce sta ripetendo una convenzione, o sta costruendo l'espressione sul momento? La domanda potrebbe non avere una risposta univoca. Millikan [2005] ha compiuto un'esplorazione molto accurata di queste dinamiche dei fenomeni di convenzione, giungendo alla conclusione che è impossibile tracciare un confine univoco tra semantica e pragmatica. Ma la conclusione verosimilmente sarebbe la medesima se volessimo includere nelle procedure semantiche l'arricchimento libero. Certo, può essere sensato assumere che chi proferisce John plays well stia dicendo che un determinato individuo compie una ben precisa azione. Questo in particolare è condivisibile se si assume che la comprensione del significato chiami in causa abilità concettuali che connettono il linguaggio al mondo. Tuttavia, è altamente dubbio che il criterio della responsabilità rispetto a ciò che diciamo (versus ciò che si può inferire) consenta di tracciare in generale un confine univoco (anche se in alcuni casi specifici tale confine è piuttosto chiaro: cfr. Glucksberg [2004]). Sembra al contrario il genere di questione destinata a restare spesso oggetto di contrattazione tra parlante ed ascoltatore.

Due considerazioni. La prima è che le osservazioni di Millikan appaiono in un senso come il completamento ideale del ragionamento qui proposto sulla sintassi. Le convenzioni semantiche, così come le regole sintattiche, sono dopotutto apprese da individua a partire dall'esposizione a comportamenti linguistici individuali. Ogni forma di regolarità sociale del linguaggio, se si rinuncia alla stampella teorica dell'innatismo, non può essere che il risultato di un processo di stabilizzazione sempre parziale. Così, nel corso della grammaticalizzazione di una regola sintattica può essere indecidibile se il parlante sia guidato da esigenze sepressive di ordine pragmatico oppure già da una convenzione sufficientemente consolidata, e se anche vi fosse una risposta univoca, questa potrebbe non valere per un altro parlante (o per lo stesso in un altro momento). Pertanto la tesi di Millikan secondo cui non possiamo tracciare un confine netto tra semantica e pragmatica è già implicita nelle considerazioni precedenti circa la sintassi basata sull'uso.

Una seconda considerazione è che l'esigenza di tracciare una linea univoca tra semantica e pragmatica potrebbe essere meno pressante di quanto si pensi, se ci si attiene allo spirito del principale tentativo di revisione, cognitivamente orientato. della pragmatica griceana: la teoria della pertinenza di Sperber e Wilson [1986]. Il nome deriva dal fatto che gli autori si oppongono al ruolo che Grice assegna alle quattro massime conversazionali: la pertinenza non sarebbe appena uno dei principi che guidano l'interpretazione dei messaggi verbali, essa costituirebbe piuttosto il principio cardine che riassorbe in sé gli altri. L'idea di fondo è che l'interpretazione del linguaggio non vada concepita in isolamento dalla comprensione dell'agire, proprio e altrui, nel mondo. Gli esseri umani hanno scopi da perseguire, e concepiscono inoltre i propri simili come disposti a cooperare nel perseguirli. Il linguaggio è uno degli strumenti attraverso cui si effettua tale cooperazione. Dunque l'interpretazione è guidata dall'assunzione che chi comunica con noi intenda essere pertinente rispetto a scopi provvisoriamente condivisi. Ciò vuol dire tra l'altro: chi pronuncia un enunciato non sta eseguendo la mera e gratuita traduzione verbale di un pensiero, sta piuttosto fornendo informazioni che ritiene utili per il perseguimento di qualche obiettivo attuale, e che assume l'ascoltatore non possa ricavare dal contesto e dalle conoscenze di sfondo. Sia il parlante sia l'ascoltatore fanno in tal modo una scommessa inferenziale a proposito dell'enunciato che si scambiano; non è scontato che condividano esattamente il codice, né che condividano le conoscenze di sfondo o il modo di individuare il contesto rilevante. Ciò che sta alla base del processo di interpretazione non è il ricorso meccanico ad un codice condiviso bensì la sensibilità verso il perseguimento di obiettivi comportamentali.

Insomma, nella lettura che propongo il punto non è che il confine tra significato letterale e inferenziale vada tracciato diversamente da come fa Grice;
il punto è piuttosto che potrebbe non esserci alcun confine netto tra i due.

E questo perché potremmo dover rinunciare all'idea che il codice, e il valore
semantico degli enunciati, siano qualcosa di oggettivo ed assoluto. Il significato
non sarebbe che una ricaduta, una fissazione sempre parziale e provvisoria, dei
processi pragmatici. Si tratta di una lettura opinabile, ma che ha il merito di
spiegare una tensione costante del pensiero di Sperber e Wilson: l'insistenza
sulla natura radicalmente inferenziale della comunicazione, che non si riduce
a mera decodifica; e d'altra parte le ripetute affermazioni circa la decodifica
come momento preliminare della comprensione (cfr. Glucksberg [2004]). La
contraddizione è insanabile se interpretiamo le due affermazioni come relative
ai tempi di elaborazione, perché in tal caso sembra sia predicata la priorità ora
dei processi pragmatici, ora di quelli semantici. Non c'è invoece contraddizione

se vi leggiamo l'espressione di una relazione dialettica tra pragmatica e semantica. Certo che c'è anche decodifica, ossia attivazione dei significati lessicali: e questa è, in un senso, logicamente anteriore all'uso che si fa di quei significati in contesto. Ma ciò non garantisce un significato completamente al riparo dai processi pragmatici: al contrario l'interpretazione nasce sempre in un contesto di attese extralinguistiche, e perciò l'uso ha il potere di modificare localmente la percezione del significato.

Tornando alla lettera delle posizioni di Sperber e Wilson, essi hanno proposto un'analisi della nozione di pertinenza basata su criteri di economia cognitiva: ossia, un'informazione sarebbe tanto più pertinente quanto maggiore è il numero delle conseguenze cognitive che se ne possono trarre, e quanto minore è lo sforzo cognitivo che la sua elaborazione richiede. Anche se in pratica, hanno sostenuto, la nostra mente potrebbe ricorrere a procedimenti abbreviati, a scorciatoie approssimate (dette «euristiche») che consentono di ottenere risultati soddisfacenti sotto il profilo dell'economia cognitiva senza dovere calcolare davvero la quantità delle conseguenze o lo sforzo cognitivo. (L'analisi più avanzata in tal senso è contenuta in Sperber [2005].)

5.2. La lettura della mente

L'approccio di Sperber e Wilson inoltre incrocia fatalmente il dibattito sulla lettura della mente (vedi cap. I, § 4.1 e cap. VI, §§ 1.3 e 3.2.1): come abbiamo visto, in base alla loro proposta la comunicazione verbale presuppone la capacità di cogliere gli altri come soggetti dotati di credenze, desideri ed intenzioni. Per i nostri scopi, tre sono gli aspetti della questione che è opportuno almeno accennare.

Innanzitutto, va detto che secondo la maggior parte degli studiosi la facoltà di mentalizzare è (almeno parzialmente) innata. Proprio questa facoltà, è stato sostenuto, potrebbe anzi rappresentare il salto evolutivo decisivo nel rendere la specie umana unica tra i primati. In particolare, essa potrebbe averci aperto le porte del linguaggio. Questa tesi è stata difesa da Tomasello [1999; 2003] secondo il quale, come osservato, le lingue sono in larga parte il deposito storico delle pratiche comunicative, e possono essere apprese grazie a forme di induzione sofisticate: che si avvalgono cioè della capacità di vedere i comportamenti come motivati da stati mentali. Ciò consente innanzitutto ai soggetti umani di agire con l'obiettivo di modificare gli stati mentali altrui (non consiste in questo dopotutto la comunicazione?). Inoltre consente loro di interpretare i comportamenti altrui, inclusi quelli comunicativi, come intenzionalmente rivolti verso scopi. La facoltà del linguaggio avrebbe la propria radice appunto in questa capacità di leggere certi comportamenti come orientati a modificare i nostri stati mentali.

Ciò sarebbe vero non solo nella prospettiva della specie, ma anche in quella individuale. La stessa capacità dei bambini di apprendere le prime parole poggerebbe in misura sostanziale sulla capacità di cogliere le relazioni intenzionali. Bloom [2000] ha passato in rassegna molte delle evidenze empiriche in tal senso: a cominciare dagli studi di Baldwin che mostrano come i bambini non associno i nomi degli oggetti a ciò che percepiscono attualmente, come suggerirebbe l'associazionismo ingenuo, bensì a ciò verso cui va l'attenzione del parlante. Un altro fenomeno largamente studiato è quello per cui i bambini tendono ad associare di preferenza un nuovo nome ad un oggetto per il quale non ne sia già stato introdotto uno. Esistono diverse interpretazioni del fenomeno (Clark 1991; Markman 1989), ma particolarmente convincente è quella secondo cui il bambino sarebbe guidato da una sorta di inferenza pragmatica, basata su un'attribuzione intenzionale, del tipo: poiché il parlante vuole frasi capire, se si riferisse all'oggetto che ha un nome a me noto userebbe quel nome, se non lo fa, è perché intende riferiris a un oggetto diverso. Questi ed altri fenomeni mostrano un'attitudine ad interpretare i comportamenti (comunicativi ma non solo) come rivolti verso scopi, e in particolare verso quello scopo che è comunicare efficacemente con i proro consimili.

Infine, gli studi sulla mentalizzazione fanno largo uso dell'idea che vi siano livelli differenti di rappresentazione in gioco. Un conto è rappresentaris un ostato di cose, un altro è rappresentazioni di primo livello), e così via (metarappresentazioni di primo livello), e così via (metarappresentazioni di secondo livello e oltre). Tra le applicazioni delle teorie sulla mentalizzazione al linguaggio vi è l'analisi di come fenomeni comunicativi diversi possano chia mare in causa livelli di rappresentazione, e dunque gradi di lettura della mente, differenti. Ad esempio, Happé [1993] riferisce studi sperimentali che sembrano supportare una tesi di Sperber e Wilson, quella secondo la quale gli enunciati tetterali costituiscono una sorta di grado zero per la lettura della mente, gli enunciati metaforici richiedono la capacità di formare metarappresentazioni di primo livello, l'ironia e sige la formazione di metarappresentazioni di primo livello, l'ironia e sige la formazione di metarappresentazioni di secondo livello.

Linguaggio e memoria

Gli studi sulla memoria offrono una prospettiva nuova e stimolante alle scienze del linguaggio. Essi confermano la correttezza dell'approccio cognitivo e inducono a sviluppare una concezione complessa delle strutture del linguaggio, la cui analisi non si arresta più a una mappatura tutta interna al sistema dei rapporti della lingua, ma si apre al modoin cui dimensioni come la sintassi e la semantica si connettono con peculiari processi e meccanismi cognitivi. Infine questi studi mostrano come la linguisiticità del soggetto umano sia una dimensione oli sticache pervade in modi sorprendenti e finanche contraddittori la nostra percezione del mondo.

1. LA PRIORITÀ DEL MENTALE

In questo capitolo affronteremo il problema della relazione del linguaggio con una delle principali funzioni cognitive superiori: la memoria. Procederemo discutendo due problematiche interconnesse: da una parte ci chiederemo in che modo il linguaggio favorisce i processi del ricordo e della memorizzazione, dall'altra cercheremo di comprendere quanta parte ha la memoria nei processi di produzione e comprensione del linguaggio.

Per intraprendere questo percorso sarà necessario introdurre alcune nozioni chiave che riguardano le distinzioni e le definizioni dei sistemi di memoria che sono state fornite nel corso di decenni di ricera [Tulving 2000; Tulving e Craik 2000; Baddeley, Wilson e Kopelman 2002; Eichenbaum e Cohen 2001; Squire e Schacter 2002]. Si tratta di studi teorici e sperimentali, maturati in ambito psicologico, fondati sull'idea che lo studio del linguaggio non può ridursi ad una mera analisi dei suoi costituenti e strutture, ma deve implicare un'indagine dei processi cognitivi che sottendono la sua elaborazione. Da questo punto di vista ci muoveremo sulla strada indicata da Edelman secondo cui le più importanti funzioni cognitive superiori sono la categorizzazione percettiva, la memoria e l'apprendimento che solo per comodità metodologica possono essere trattate separatamente ma che, di fatto, costituiscono «aspetti inseparabili di un'unica attività mentale» [1992, 156]. In questa visione, tuttavia, il ruolo del linguaggio risulta sminuito. Prova ne l'ampio spazio dedicato alla tesi del bootstrappira semantico secondo cui il linguaggio sarebbe solo un insieme di etichette o simboli dotati di referenze che vengono giustapposti a concetti già formati e organizzati dalla nerezione.

Da una lettura attenta del suo lavoro sembra, tuttavia, che il ridimensionamento del linguaggio sia più che altro rivolto verso una tradizione psicolinguistica e filosofico-linguistica tutta centrata sull'autonomia formale delle strutture linguistiche [Pinker 1994]. Ouesti rilievi ci consentono di esprimere un'ulteriore specificazione della tesi prima enunciata e che viene ampiamente condivisa in questo libro. Ritenere che lo studio del linguaggio non si possa esaurire in una modellizzazione formale e astratta delle sue strutture non vuol dire che si possa prescindere dal ruolo precipuo che l'elaborazione mentale del linguaggio ha all'interno dei processi cognitivi. Così, se da una parte è chiaro che le scienze del linguaggio devono accettare il postulato della priorità del mentale (cfr. cap. I, \$ 2), dall'altra non è possibile relegare il dominio del linguaggio nell'ambito dello human information processing. Come vedremo, dare priorità alla dimensione cognitiva non riduce, ma anzi amplifica l'importanza dei processi linguistici all'interno del sistema cognitivo. La validità di questo assunto è evidenziata nel cap. VI. §§ 3 ss., in cui l'analisi delle psicopatologie mostra come il linguaggio possegga una dimensione ontologica che supera e riconnette insieme i suoi livelli strutturali [Pennisi 1997: 1998].

Nei paragrafi seguenti passeremo in rassegna i modelli e gli esperimenti che adducono prove a l'avore di tale visione non autonomistica del linguaggio. Per soddisfare questo scopo chiariremo innanzituto in cosa consistono i tre principali processi mnestici: codifica, ritenzione e recupero. Dopodiché definiremo i due tipi principali di amnesia rispetto alle due principali attività della memoria: il recupero del passato e l'immagazziamento delle nuove informazioni. Infine definiremo alcuni dei più accreditati sistemi mnestici quali la memoria dichiarativa e la memoria procedurale, la memoria pissodica e la memoria semantica, la memoria implicita ed esplicita e, infine, la memoria il lavoro.

Questo percorso permetterà di avanzare tre ipotesi, inerenti i processi della memoria, a sostegno della tesi della priorità del mentale l'interdipendenza tra la memoria episodico-soggettiva e la memoria semantica-intersoggettiva; la presenza di aspetti procedurali nell'elaborazione linguistica che configurano l'esistenza di una memoria linguistica in cui i tre principali sistemi di memoria sono interconnessi tra loro; l'esistenza di und opopio ruolo del linguaggio nei processi cognitivi per cui questo non è solo, come è sembrato a molta filosofia, lo specchio cristallino del mondo attraverso cui i dati sensoriali vengono portati dentro la sfera rigorosa dei concetti e dell'universale, ma è una lente che va continuamente rifocalizzata

e riassestata rispetto al suo oggetto e che può spesso entrare in interferenza con la memoria visiva o creare distorsioni del ricordo effettivo e reale

2. UNA NUOVA CONCEZIONE DELLA MEMORIA

A seguito degli studi cui si è accennato nel precedente paragrafo, la memoria non è più considerata oggi come una mera capacità di recuperare le informazioni dal passato, ma come una funzione più complessa attraverso cui oggetti ed eventi vengono elaborati all'interno di tutte e tre le fasi della codifica, della ritenzione e del recupero. Oltre a questa dinamica la memorizzazione consiste anche in un processo di continua categorizzazione e riorganizzazione della nostra conoscenza in modi peculiari e sofisticati.

La sistemazione delle informazioni secondo precise regole di classificazione avviene tramite un processo, detto «consolidamento», all'interno del quale i dati immagazzinati passano da uno stadio di precarietà mnestica tipico della memoria a breve termine (MBT) ad uno di permanenza e radicamento all'interno dei circuiti cerebrali. La fase di codifica cede dunque il passo a quella di ritenzione in cui le informazioni sono mantenute e continuamente rafforzate e rielaborate dalle altre esperienze della vita all'interno della memoria a lungo a termine (MLT). In passato si pensava che la MBT e la MLT fossero due magazzini separati e che le informazioni passassero dall'una all'altra attraverso la ripetizione dello stimolo. Negli ultimi decenni l'idea di MBT è stata sviluppata attraverso la nozione di memoria di lavoro che avrebbe la funzione «di tenere a mente vari elementi di informazione e di metterli in relazione fra di loro» [Baddelev 1982, 190] e costituisce una sorta di «torre di controllo» delle attività cognitive. È la memoria che si attiva quando navighiamo in un sito internet e conserviamo vive solo quelle informazioni che ci servono per portare a termine la nostra ricerca. La memoria di lavoro è un ambito in cui viene dimostrato chiaramente come il ruolo della memoria sia imprescindibile per una normale funzionalità del linguaggio (cfr. infra, § 3 ss.) poiché il suo funzionamento esatto dipende da come le singole lingue strutturano la loro morfologia e la loro sintassi e da come il senso delle frasi sia legato o meno ad un'ontologia epistemica della realtà.

Sulla base di queste distinzioni possiamo certamente aggiungere un'altra prerogativa della memoria: la capacità di gestire e controllare temporaneamente un numero sufficiente di informazioni relative ad una determinata attività cognitiva. La memoria appare, quindi, come un'entità bifronte in cui quello che vede la faccia rivolta al passato viene rielaborato dalla faccia che guarda al futuro. Questa cornice teorica si ritrova nella concettualizzazione di Neisser in cui è fondamentale la nozione di schema. Questa mappa cognitiva consiste in un insieme di strutture cognitive che permettono al percettore di elaborare in modo specifico determinati stimoli visivi preselezionandoli su uno sfondo non più neutro [1976, 77-78]. In questo schema la memoria non è che una sorta di preview sugli eventi per cui «l'informazione già acquisita determina quella

che sarà raccolta in futuro» e «questo è il meccanismo che sta alla base della memoria» stessa [ibidem, 45-46].

La memoria connette dunque le informazioni passate con quelle future in cui il soggetto si imbatte garantendo alla percezione una continuità temporale fondamentale per la costruzione di punti di riferimento categoriali stabili ma anche elastici e adattativi. Il modello di Neisser fa emergere che la memoria non è solo una capacità retrospettiva ma prospettica, cioè proietta nel futuro le informazioni che possediamo influenzando la nostra attività sensoriale. In modo più preciso la nozione di memoria prospettica riguarda la nostra capacità di ricordare a tempo debito quello che dobbiamo fare nel corso delle nostre attività quotidiane e di progettare strategie utili al conseguimento di un obiettivo [Groot et al. 2002, Wilson et al. 2005].

Tutti questi dati ribadiscono l'idea che la memoria non è solo un ricordo a posteriori degli eventi ma una registrazione e acquisizione continua di nuovi dati cioè una capacità attiva di memorizzazione. La sua influenza sul nostro apprendimento può venire compromessa da deficit selettivi che sono descritti in letteratura [Baddeley, Wilson e Kopelman 2002]. In generale possiamo avere due tipi di amnesia: una di tipo retrogrado in cui il soggetto non riesce a ricordare gli eventi precedenti al trauma: un'altra di tipo anterogrado in cui il soggetto è incapace di aggiornare il suo database degli eventi posteriori al trauma. Ci sono amnesici che vedono il loro dottore per la consueta visita di routine, che parlano con lui, lo chiamano per nome e lo salutano con il suo nome ma che, non appena il dottore è uscito dalla loro stanza, ne dimenticano completamente il viso, il nome e anche cosa egli ha detto loro durante la visita. Questi soggetti possono leggere un giornale da cima a fondo capendo il contenuto di ogni articolo e riflettendo sulle notizie pubblicate, ma appena voltano pagina non riescono a trattenere nella mente nessuna notizia precedentemente letta con piacevolezza e naturalezza. Il paziente K.I. ad esempio poteva leggere un brano di prosa e ripeterlo immediatamente ma poi lo dimenticava subito, al passare di un breve intervallo [Baddeley e Wilson 1988a, 36].

L'amnesia è dunque selettiva rispetto alle due fasi principali del ricordo. Ia codifica e il recupero È stato dimostrato da una folta casistica che l'amnesia anterograda è il correlato comportamentale delle lesioniall'ippocampo [Squire 1992; Cohene Eichenbaum 1993; Perez-Lazaro etal. 2005]. Clark, Zola e Squire (2000) confermerobero la teis escondo cui la formazione ippocampale è la base biologica del sistema della memoria dichiarativa che si contrappone al sistema della memoria procedurale. Questa distinzione è strettamente legata a quella tra memoria implicita e memoria esplicita. La memoria dichiarativa riguarda il «sapere che», cioè la conoscenza delle parole e dei concetti e può essere suddivissi in due componenti basilari: la memoria semantica e la memoria espisodica. Questo sistema ha una parentela molto forte con la memoria esplicita cioè con il ricordo volontario di un'informazione della cui presenza nella memoria il soggetto è cosciente. La memoria procedurale riguarda invece il «sapere come» cioè la capacità di attivare abilità motorie e reattive di diverso tipo con una buona dose di automatismo. Questo sistema è intrecciato e si sovrappone con quello della di automatismo. Questo sistema è intrecciato e si sovrappone con quello della di automatismo. Questo sistema è intrecciato e si sovrappone con quello della

memoria implicita cioè con la possibilità di «essere influenzati da un'esperienza passata senza avere la consapevolezza di ricordare» [Schacter 1996, 169] e da un retaggio inconscio di input mnestici che guidano il nostroagire senza che noi ci rendiamo conto di una volontaria attivazione della nostra memoria. Ouesto sistema può essere studiato a partire dagli effetti comportamentali che esso causa e quindi solo indirettamente.

Quasi tutte le attività motorie, come muoversi, allacciarsi le scarpe, camminare, andare in bicicletta, nuotare, si fanno senza una particolare riflessione. È giusto ricordare però che molte memorie procedurali non nascono già implicite ma lo diventano dopo una lunga fase di esercitazione e apprendimento. Si passa così da una fase esplicita ad una automatica in cui l'attività in questione, ad esempio il nuotare, diventa in tutto e per tutto una memoria procedurale implicita. Questo sistema di memoria attiva alcuni centri cerebrali profondi ed è talmente forte da resistere alla devastazione provocata dall'amnesia.

A questo proposito sarebbe interessante capire se l'azione del camminare scaturisce da un'attivazione della memoria procedurale. Forse un certo tipo di azioni dovrebbe esserepensato più come una funzione dello sviluppo fisiocognitivo che non implica la memoria ma una disposizione puramente genetica. Richiamando Chomsky (cap. III, § 2) potremmo chiederci se il linguaggio sia una attività di questo tipo. Non possiamo rispondere in questa sede a questa domanda. Dovremmo infatti discutere ampiamente delle teorie dell'acquisizione del linguaggio. Di certo possiamo dire che quest'ultimo non è né una mera disposizione genetica attivata durante l'esposizione dei primi anni di vita, né una semplice memoria procedurale implicita. Il linguaggio emerge, sulla base di un patrimonio genetico ben preciso (cap. II, § 1.2), attraverso uno sviluppo socioculturale della memoria in cui sono intrecciati gli aspetti impliciti ed espliciti di questa funzione cognitiva [Nelson 1996; Tomasello 2003]. Nella maggior parte della vita quotidiana noi non ci sforziamo più di tanto per recuperare e produrre i segni del linguaggio cioè le parole. L'attività verbale non prescinde però da una coscienza metalinguistica che è una proprietà fondamentale del codice delle lingue storico-naturali. La produzione e la comprensione del linguaggio fanno interagire dunque componenti procedurali e componenti esplicite, componenti epilinguistiche [Culioli 1999] e metalinguistiche, componenti controllate ed automatiche.

Entro questa prospettiva possiamo comprendere come il linguaggio si serva di tutti e tre i sistemi di memoria distinti da Tulving [1972], il quale, non a caso, ha riflettuto sulla loro maggiore o minore relazione con la coscienza [Tulving 1983, 33; 1985]. Lo psicologo canadese ha distinto innanzitutto la memoria episodica e semantica e poi ha aggiunto quella procedurale di cui abbiamo già parlato. La memoria semantica è la memoria che costituisce la conoscenza del mondo, «è la memoria necessaria per l'uso del linguaggio. Essa è un patrimonio mentale, una conoscenza mentale che una persona possiede circa le parole e gli altri stimoli verbali, i loro significati e i loro referenti, circa le loro relazioni, le formule e gli algoritmi per la manipolazione di questi simboli, concetti e relazioni» [Tulving 1972, 386]. Essa riguarda tutta l'organizzazione della conoscenza, la quale si va emancipando per così dire dalla soggettività umana mirando ai fatti e alle verità condivise universalmente più che agli eventi di cui è partecipe e testimone la singola persona. Questi eventi più intimi sono parte invece della memoria episodica la quale è legata alle variabili autobiografiche, contestuali e soggettive del ricordo. Essa concerne «le esperienze uniche, concrete, personali» [Tulving 1983, 1] fornite dal ricordo di eventi della propria viza. Mentre la memoria semantica riguarda i fatti acontestuali e la capacità di saper descrivere oggetti e fenomeni, la memoria episodica riguarda gli eventi relativi al vissuto personale di ciascuno e la capacità di saper raccontare i fatti della propria autobiografia.

Per capire meglio in cosa consiste la memoria semantica possiamo dire che essa riguarda sia il modo in cui il lessico si struttura attraverso relazioni semantiche molto precise come quelle di opposizione, di complementarità, di antonimia, di iperonimia ecc. [Lyons 1977; Simone 1989, 485-498; Basile 2001], sia la teoria della categorizzazione (Velardi 2005) e i vari reticoli associativi che legano fra di loro le parole di una lingua. Bower e colleghi [1969] hanno dimostrato, ad esempio, come le parole organizzate in un quadro categoriale ben preciso con rapporti di iperonimia e iponimia ben distinti vengono rievocate meglio delle parole presentate in modo confuso e disordinato.

Occorre chiarire subito che la memoria semantica non comprende solo il dominio della memoria proposizionale l'inguistica. Dopo la prima formulazione Tuliving si è reso conto che l'aggettivo semantico ha tratto in inganno gli studiosi, i quali hanno pensato che essa si riferisse solo al linguaggio verbale e non anche a tutti gli altri formati sensoriali lanalogico visivi, uditivi, olfattivi ecc.) in cui la conoscenza viene immagazzinata: «noi possiamo dire, certamente, che la memoria semantica c'ontiene' la conoscenza delle parole, ma essa contiene anche la conoscenza di molte altre cose, come le facce e le voci delle persone, la configurazione degli oggetti e dei luoghi, le melodic delle canzoni, il sapore dei cibi» [Tulving 1983, 69]. La riformulazione di Tulving 1985, 64] la triformulazione di Tulving 1985, 64] la retta: «la designazione di memoria semantica è soltanto un accidente e una parafrasi migliore, per riferisi allo stesso concetto, potrebbe essere 'conoscenza generale del mondo'». Ciò nontogli che la maggior parte degli studi sulla memoria semantica si siano focalizzati sulla codifica e il recupero delle parole perché il linguaggio si è rivelato lo strumento più efficace pe la comprensione della memoria semantica viu della colo strumento più efficace per la comprensione della memoria semantica viu si siano focalizzati sulla codifica e il recupero delle parole perché il linguaggio si è rivelato lo strumento più efficace per la comprensione della memoria semantica.

3. AMNESIA E LINGUAGGIO: LA CONSERVAZIONE DELL'INFORMAZIONE VERBALE

Nel § 42 abbiamo parlato degli aspetti procedurali e impliciti presenti nei processi linguistici. Lo studio dei pazienti amnesici ha fornito delle prove sor-prendenti di questa ipotesi. Negli anni Settanta una serie di studi aveva fatto pensare che gli amnesici fossero incapaci di trasferire l'informazione verbale da un magazzino di MBT, relativamente integro, alla MLT Baddeley e Warrington 1970]. Questa visione della sindrome amnesica comincia a cambiare grazie ai risultati di altri esperimenti che hanno rivelato come la MLT verbale degli amnesici resta integra nella sua forma implicita non cosciente [Warrington e Weiskrantz

1970]. Questi ricercatori hanno confrontato le prestazioni di 4 amnesici [tre Korsakoff e uno con lobotomia temporale] e di sedici pazienti di controllo sotcoposti a due test di memoria esplicita e due test di memoria implicita. Questi ultimi sono il word-fragment identification e il word-stem completion, in essi bisogna tentare di indovinare la parola a partire da un suggerimento minimo. I soggetti devono identificare parole mutilate o produrre la prima parola che viene loro in mente per completare la radice [stem]. In questo caso era fornito loro un suggerimento di tre lettere:

> tab per table [tayolo] sco per scorch [bruciatura].

Il secondo esperimento di Warrington e Weiskrantz [ibidem] ha mostrato sorprendentemente che se i soggetti di controllo avevano prestazioni migliori degli amnesici, sia nel test del richiamo libero che in quello del riconoscimento, nei test riguardanti la memoria implicita la quantità delle risposte era praticamente uguale, Confermato da molti altri studi [Shimamura 1986], questo risultato ci fa riflettere sul fatto che se il magazzino della MLT verbale degli amnesici fosse stato vuoto, allora non si sarebbe potuto spiegare da dove i pazienti avessero potuto trarre la loro capacità di identificazione e completamento delle parole. In qualche modo la loro mente ha accesso al dizionario linguistico. Il linguaggio possiede dunque degli aspetti procedurali molto forti per cui ciò che chiamiamo informazione verbale non coincide soltanto con il ricordo cosciente delle parole, ma consiste anche in un processo automatico di attivazione lessicale, capace di resistere alla devastazione dell'amnesia. Non è un caso che nella configurazione standard del deficit sia pregiudicata più spesso la memoria episodica e autobiografica che non la memoria semantica e procedurale (cfr. infra. § 3.1).

Tra questi due sistemi esiste un'ampia zona di intersezione, un territorio comune dove le leggi dell'uno valgono anche per l'altro e viceversa. Un fenomeno che fa da ponte fra i due sistemi e rientra dentro questa sfera intermedia è il meccanismo del priming cioè l'effetto prodotto dal suggerimento o istruzione (prime) fornita ai soggetti dallo sperimentatore. Squire [1993] ha inserito il priming tra i fenomeni caratteristici della memoria non dichiarativa procedurale. Secondo alcuni studiosi il compito di completamento di Weiskrantz sarebbe simile a quello della ripetizione in condizioni di priming [Mandler 1980; Jacoby e Witherspoon 1982]. D'altra parte Warrington e Weiskrantz [1978] hanno suggerito che la rievocazione guidata e il primino implicano l'attivazione del sistema di memoria semantica. In una recenterassegna Roediger [2003] anche se critica la vaghezza del la nozione di memoria implicita, conferma il ruolo del priming nell'attivazione di concetti nella memoria semantica. Evidenze di questa relazione sembrano emergere da studi a carattere neurofisiologico [Wagner, Bunge e Badre 2004]. Questo quadro interpretativo rende plausibile l'ipotesi che stiamo avanzando e cioè che sussista un profondo legame tra dimensione semantica e dimensione procedurale. Il compito di priming, che appartiene alla memoria non dichiarativa, attiva il sistema di memoria semantica. Dunque si può ipotizzare che la memoria linguistica ha una forte dimensione procedurale e implicita e coinvolge i tre principali sistemi di memoria. Non a caso per Tulving «la conoscenza dell'uso delle informazioni lessicali dovrebbe essere vista come una componente della memoria procedurale» [Tulving 1983, 70] e «da memoria lessicale così teorizzata, cioè come una capacità complessa o una memoria per procedure, potrebbe essere applicata o essere una parte di entrambi i sistemi episodico e semantico» [tib/de/m]. La memoria linguistica deriva la sua straordinaria elasticità e plasticità dal fatto di legare in modo interconnesso entrambi gli aspetti, implicito ed esplicito, soggettivo ed intersoggettivo delle funzioni cognitive.

3.1. La memoria semantica

La pregnanza del fenomeno del priming emerge nel cosiddetto test di «decisione lessicale» [Meyer e Schvaneveldt 1971]. I soggetti verificano con più facilità se una stringa è una parola o no, se fra la parola e il prime sussiste una forte relazione semantica. Così la stringa BURRO è riconosciuta come parola se preceduta da PANE più facilimente che non se preceduta da CANE. Il priming si riferisce ad una qualche forma di organizzazione della conoscenza che lega le parole attraverso associazioni più o meno forti, le quali a loro volta dipendono da parentele categoriali o contestuali più o meno strette fra i termini. Questo fenomeno legherebbe anche in modo peculiare la sfera della percezione visiva e del linguaggio. Come vedremo, infatti, le interazioni tra memoria visiva e memoria verbale sono fondamentali per la spiegazione dei processi di codifica (cf. infra, 5 4) e di interferenza (infra, 5 5). Ma per adesso concentriamo ancora la nostra attenzione sulla memoria semantica.

Non è un caso che alcuni autori hanno spiegato il priming attraverso la nozione di propagazione dell'attivazione (Collins e Loftus 1975). Questa è la base di un fortunato modello della memoria semantica che spiega il modo in cui le relazioni fra le parole sono organizzate all'interno della mente. Il priming di un concetto ne attiva altri, così «quando un concetto viene elaborato, l'attivazione della elaborazione si diffonde lungo tutto il percorso della rete secondo un grado decrescentes (Loftus 1975, 236).

Il valore di questa ipotesi è confermato dagli studi sui potenziali evocati. Molti di questi hanno dimostrato come la frequenza delle parole sia strettamente colle-gata all'emergere delle componenti N400 e P600. Frequenza di esposizione alle parole, intervallo temporale dalla prima ripetizione, numero delle ripetizioni e contesto influenzano l'elaborazione linguistica suggerendo come la memoria ne sia una componente cruciale (Besson e Kutas 1993; Besson, Kutas e Van Petten 1992; Young e Rugg 1992).

La P600 «sembra essere elicitata nel modo più attendibile dalle probabilità delle configurazioni morfo-sintattiche di vario tipo, ed essere estremamente rispondente ad esse. [...] L'elaborazione della sintassi ha luogo facendo riferimento alla frequenza relativa [...] delle varie regolarità del linguaggio, una frequenza

che viene aggiornata con l'esperienza» Federmeir e Kutas 2000, 3051 e dunque attraverso la memoria [Kutas e Federmeir 2000]. Infatti secondo i ricercatori «per dare senso all'input linguistico il cervello ha bisogno: 4) di mettere in relazione vari tipi di parole l'una con l'altra, e b di mettere in relazione parole e gruppi di parole con la conoscenza del mondo immagazzinata nella memoria a lungo termine» [Federmeire Kutas 2000, 306]. Gli studi ERPs confermano dunque che l'elaborazione del linguaggio dipende dalla conoscenza del mondo immagazzinata nella MLT [McKoon e Ratcliff 1998: Avedelott, Kutas e Federmeier 2005].

In particolare la N400 sembra essere collegata alla memoria semantica e alla sua integrazione entro determinati contesti. La N400 indicizza la ricerca che il parlante compie all'interno della sua memoria semantica quando deve processare delle frasi in cui sono presenti delle anomalie semantiche. La sua ampiezza è condizionata da fattori decisivi per la memoria [Stuss, Picton e Cerri 1986] come il numero di stimoli da ricordare e la loro durata di latenza [Chao, Nielsen-Bohlman e Knight 1995 l, nonché il numero di volte in cui lo stimolo viene presentato nel corso dell'esperimento [Van Petten e Kutas 1990; 1991]. L'ampiezza della N400 è modulata dagli aspetti semantici di un precedente contesto linguistico, sia esso una parola, una frase o un discorso di più frasi. Questa si riduce se lo stimolo è preceduto da una parola fortemente associata (es. cane e gatto), mentre si amplia se è preceduto da una parola meno attinente (tazza) Brown e Hagoort 1993].

L'ampiezza della N400 è ridotta nella misura in cui la parola è compatibile con il contesto semantico in cui è inserita. Un'anomalia sintattica come Egli prende il caffè con latte e CANE elicita la massima N400. Parole non anomale ma meno probabili come Egli prende il caffé con latte e MELE generano minore attività, comunque più ampia di quella generata da parole finali più probabili come Egli prende il caffè con latte e ZUCCHERO [Kutas e Hillvard 1980: 1984]. Frasi come il topo andò velocemente nella sua tana o il topo andò lentamente nella sua tana hanno la stessa elaborazione ma, se sono precedute da circostanziali come vagando in cerca di una preda saranno elaborate in modo diverso. La N400 come risposta a lentamente sarà maggiore che come risposta a velocemente [Van Berkum, Hagoort e Brown 1999).

3.2. La complessità della memoria

Dopo aver mostrato come la memoria procedurale e la memoria semantica interagiscono nella elaborazione del linguaggio occorre comprendere in che modo la memoria episodica partecipa a un processo così complesso. L'esistenza di questa organizzazione è stata teorizzata da Tulving seguendo una tendenza, tipica dell'atteggiamento sperimentale, a separare il versante della soggettività, del personale e del privato, dal versante oggettivo, esterno e pubblico che può essere indagato in modo empirico e verificabile. Oggi la distinzione è suffragata da un'imponente messe di evidenze sperimentali [Tulving 2002; Rosenbaum et al. 2005].

Come abbiamo detto, la memoria episodica riguarda pli eventi esperiti dai singoli soggetti mentre la memoria semantica riguarda i concetti e i fatti oggettivi condivisi da una cultura e da una comunità linguistica. Se approfondiamo con attenzione queste definizioni ci potremo rendere conto che la distinzione fra memoria episodica e memoria semantica non si sovrappone in modo rigido alla distinzione fra soggettivo e oggettivo, interno ed esterno, personale e pubblico. Nessuno esclude, infatti, che la memoria semantica abbia una dimensione sogettiva e personale. Non solo perché questo sistema è interdipendente da quello episodico e, quindi, condivide in parte il suo patrimonio di conoscenze personali e biografiche, ma anche perché lorganizzazione generale della conoscenza, alla cui strutturazione è delegato il sistema semantico, implica anche una partecipazione attiva del singolo soggetto.

Ora questi processi non possono essere inclusi nel dominio della memoria episodica perché non riguardano fatti della biografia dei singoli soggetti. Essi riguardano in modo peculiare il modo in cui ognuno di noi fasue e integra le idee, le competenze, i percorsi inferenziali che una cultura trasferisce nella memoria semantica dei singoli. Le evidenze a favore di un' organizzazione soggettiva della conoscenza sono molte, come, d'altronde, quelle a favore della interdipendenza della memoria episodica e semantica [Humpreys, Bain e Pike 1989, Ratcliff e McKoon 1986].

Questa interpretazione delle ipotesi di Tulving può essere confortata da una serie di altre evidenze che rimandano al modo in cui i processi della memoria avvengona di interno del cervello. La loro elaborazione ci lloro sviluppo rendono visibile quanto sia fondamentale il ruolo della soggettività. Due esempi efficaci di questa complessità sono il fenomeno del gradiente temporale dell'amnesia retrograda e le nuove indagini sul riconsolidamento.

Una delle ipotesi più importanti rispetto alla capacità di un amnesico di ricordare il passato è quella, conosciuta come legge di Ribot [1881], secondo cui la sindrome amnesica colpisce i fatti più recenti, che sono dunque i più fragili. Dimostrazioni di questa legge provengono da indagini compiute su pazienti affetti da sindrome di Korsakoff, malattia causata da alcolismo e malnutrizione che comporta un'atrofizzazione del nucleo medio-dorsale del talamo e conseguente perdita di memoria. Questi studi hanno dimostrato come i ricordi più danneggiati sono quelli più vicini all'episodio della malattia, mentre i ricordi più lontani sono conservati meglio [Albert, Butters e Levin 1979]. La nozione di gradiente emerge anche dal monitoraggio di casi singoli come quello di H.M. [Milner, Corkin e Teuber 1968] o di P.Z. [Butters e Cermak 1986].

HM ad esempio aveva ventinove anni al momento dell'operazione ed era affetto da un vuoto di memoria riguardante i dieci anni precedenti l'operazione, mentre ricordava bene i fatti della sua infanzia. Come spiega bene Oliverio [1999, 122]:

La regione temporale media che era stata asportata dal cervello di H.M., non doveva essere evidentemente, la «sede della memoria», altrimenti accanto al blocco della formazione dei nuovi ricordi sarebbero dovuti scomparire anche tutti i ricordi del passato. H.M. conservava invece i ricordi più antichi, quelli consolidati, e sappiamo oggi, distribuiti nei circuiti nervosi della corteccia, dopo un periodo di ore, mesi o anche anni in cui la regione temporale media (ippocampo, amigdala e corteccia temporale) codificano le esperienze, contribuiscono a scomporle in categorie, a connotarle sulla base del loro significato e a distribuirle nelle varie regioni del cervello, corteccia cerebrale in primo luogo.

Oliverio applica al circuito della memoria una metafora molto azzeccata: la corteccia sarebbe l'«archivio dei ricordi», laddove la regione temporale media sarebbel'archivista. Quest'ultima «iscrive le esperienze, trasformandole da fragili memorie di lavoro in memorie durature e le rimugina per ore, mesi o persino anni, svolgendo un minuzioso lavoro di classificazione, paragone e generalizzazione. Questa parte del cervello è uno snodo essenziale per paragonare tra di loro le esperienze, consentire di tracciare analogie, ristrutturarle in termini di significati» [ibidem].

Nel caso di H.M. è venuto a mancare dunque l'archivista e allora molti ricordi che sono depositati nel cervello sono rimasti inaccessibili. Sono rimasti disponibili solo quei ricordi che si sono sedimentati nelle zone superiori del cervello, quelli che erano stati catalogati in modo saldo e stabile nei circuiti corticali. È il circuito della memoria corteccia temporale-ippocampo-diecenfalo che permette di connettere le diverse esperienze della vita nella memoria episodica e che gioca un ruolo decisivo nella memoria semantica come l'apprendere nuovi vocaboli. È vero altresì che nessuna singola struttura del cervello può essere definita come «il deposito della memoria ma come lo snodo di un circuito cui fanno capo alcuni aspetti della mente» [ibidem]. Una serie di studi sulle strutture nervose connesse con la memoria mostrano una stretta connessione fra regione temporale da una parte e amigdala e ippocampo dall'altra. L'ippocampo a sua volta è unito al diecenfalo tramite il fornice in un circuito della memoria più ampio in cui è coinvolta anche la corteccia, legata in modo diretto anche con l'ippocampo e il diecenfalo. L'amigdala è una ghiandola, posta anch'essa nel lobo temporale, che è responsabile della valutazione emotiva di un evento ed ha un ruolo decisivo nel consolidamento [McGaugh 2000]. Se una lesione dell'amigdala non porta ad una amnesia, essa è fondamentale per garantire una adeguata elaborazione delle informazioni. Questi dati mostrano come non sia da sottovalutare il ruolo delle zone sottocorticali del cervello nell'elaborazione del linguaggio (cfr. cap. VI. §§ 2.2 ss.).

Ma torniamo alla complessa configurazione dell'amnesia retrograda. Già Weiskrantz [1985] ha fatto notare che il paradigma del gradiente temporale è molto controverso, Rosenbaum, Winocur e Moscovitch [2001] hanno confermato questa ipotesi opponendo alla teoria classica del consolidamento una Multiple Trace Theory secondo cui il complesso ippocampale contribuisce al recupero dei ricordi antichi e recenti attraverso delle interazioni ben precise con la neocorteccia. Più recentemente Steinvorth, Levine e Corkin [2005] hanno riesaminato il caso di H.M insieme al paziente W.R., anche egli con lesioni bilaterali al lobo temporale mediano, senza riscontrare la presenza di un gradiente temporale per la loro memoria autobiografica. Secondo le loro evidenze, il ruolo della regione temporale mediana non è temporalmente limitato né per la memoria episodica, né per la memoria semantica. Gli autori suggeriscono che solo la memoria semantica diventa indipendente dalle strutture temporali mediane, mentre questo non succede per quel che riguarda il sistema della memoria episodico autobiografica.

Se è giusto riferire queste recenti obiezioni alla teoria del gradiente si può affermare che, qualunque sia l'esito di questo dibattito, esso non può indebolire l'idea per cui la soggettività rientra in modo determinante nell'organizzazione della conoscenza. Infatti anche se la legge del gradiente temporale fosse messa in crisi non lo sarebbe l'evidenza per cui i ricordi vengono rielaborati e consolidati attraverso una continua comunicazione fra la neocorteccia e i lobi temporali. Questa idea si sposa perfettamente con le moderne ricerche sul riconsolidamento. Il concetto di immutabilità e stabilità della MLT è stato incrinato da una recente serie di ricerche condotte da Sara [2000] e Nader e colleghi [2000]. In questi esperimenti un animale viene condizionato a riattivare una particolare sequenza comportamentale che era stata oggetto di un precedente processo di consolidamento. Subito dopo un nuovo training produce un'interferenza fra questo ricordo riemerso nella rievocazione e la vecchia traccia codificata nel consolidamento. Da questi esperimenti è risultato che il ricordo, ormai presumibilmente consolidato, dell'esperienza acquisita in precedenza, viene in realtà in buona parte cancellato se l'animale viene sottoposto al training subito dopo la riattivazione del ricordo stesso.

Questi esperimenti rivelano che i ricordi non sono immagazzinati in forma stabile in un archivio, ma che una volta riattivati sono suscettibili di interferenza da parte di una varietà di agenti amnesici. Ogni operazione di richiamo rende la traccia flessibile e nuovamente soggetta a un processo di riconsolidamento (Riccio, Moody e Millin 2002).

Questa scoperta conferma l'ipotesi di Roediger [2000] e Tulving [2002] secondo cui la fase del recupero è la più importante per la comprensione dei processi della memoria, specialmente di quelli di natura soggettiva ed episodica.

3.3. Amnesia pura?

Come abbiamo visto la memoria semantica implicita è preservata anche nelle amnesie più gravi e la memoria semantica non è un monolite compatto i cui contenuti sono avulsi dalla dimensione soggettiva. A questo punto possediamo notevoli argomenti a favore della tesi generale espressa nel § 1: ci siamo resi conto di quanto una comprensione dei procesi del linguaggio non possa prescindere da uno studio attento dei fenomeni mentali. Resta: tuttavia, da chiarire quale ruolo continua a giocare il linguaggio nel contesto delle problematiche riguardanti la memoria.

La stringente relazione tra processi cognitivi e processi linguistici sembra emer-

gere chiaramente dalla controversa questione rappresentata dalla nozione di sindrome amnesica classica o amnesia pura. Il quadro clinico di molte amnesie è ricorrente. Di solito siamo «in presenza di un'eccellente memoria di lavoro e di una ben preservata memoria autobiografica e semantica» [Baddeley 1990, 453]. In questi casi l'amnesia sarebbe pura perché il quoziente intellettivo dei pazienti amnesici resta alto anche di fronte a prove fallimentari nei test basilari della memoria. Molti pazienti mantengono integre le loro abilità cognitive e intellettive: leggono giornali, eseguono calcoli, risolvono cruciverba, giocano a scacchi. Questa descrizione ha dei problemi perché da un lato non si riesce a comprendere come possa definirsi dotato di piena intelligenza un soggetto le cui competenze inferenziali, discorsive e comunicative sono incrinate dalla mancanza di memoria, dall'altra perché uno studio attento dei singoli casi ci fa capire che «in realtà casi veramente puri sono rari» e che «la sindrome amnesica classica è stata così estesamente studiata che è facile trarre l'impressione che tutti i pazienti amnesici siano di fatto così» [ibidem] mentre è probabile che così non sia.

Penso sia interessante a proposito riesaminare il caso di un'amnesia apparentemente pura. Il dott. Meltzer, psicologo della Washington University, fu colpito, nel settembre del 1974, da anossia cerebrale, cioè da mancata ossigenazione di alcune aree dell'emisfero sinistro a seguito di un attacco cardiaco. L'amnesia si era andata aggravando dopo un coma di sei settimane.

Meltzer ci ha lasciato uno dei pochi resoconti autobiografici di un amnesico che possediamo. Il suo diario si riferisce solo ai deficit della MBT, anche se la spiegazione del danno è più ampia come riferisce lo stesso Meltzer parlando dei dottori presso cui si reca nella primavera del 1975 [1983, 7]:

dopo quattro mesi, egli mi disse che la mia memoria a breve termine era normale e che io avrei reimparato le cose che mi ero scordato. Lo psicologo che lavorava con lui mi spiegò che la mia memoria a breve termine non era «normale», ma il problema era che l'oblio di molta parte del passato era dovuto al fatto che io avevo perduto i «picchetti» su cui attaccare le nuove informazioni. La mia memoria a breve termine era povera, ma lo era perché era povera la mia memoria a lungo termine.

Riferendosi alla funzionalità della sua MRT Meltzer suddivide i suoi deficit in cinque categorie; cognizione, ricreazione, vita quotidiana, relazioni interpersonali e personalità [ibidem. 3]. Riguardo al danno cognitivo Meltzer parla delle difficoltà del ragionamento e del pensiero [ibidem, 4]:

L'organizzazione del pensiero era ostacolata [...]. Le sequenze o le relazioni fra i dati dovevano essere coordinate, ma jo avevo problemi a tenere a mente i fatti, il che rendeva difficoltoso poterli organizzare. Qualche volta io avevo deciso in anticipo che una idea o un fatto particolari erano importanti e dovevano essere inclusi nel processo che mi portava ad una decisione. Ma proprio allora quell'idea veniva dimenticata o, se era stata trascritta a penna, io dimenticavo la sua importanza. La difficoltà nel pensiero concettuale è stata considerata una caratteristica di certi tipi di organicità. Qualche volta era complicato pensare concettualmente e mi era più facile avere a che fare con cose concrete. Ma sembra che la memoria sia una

componente cruciale del pensiero concettuale. Come è possibile organizzare, vedere le somiglianze e le differenze, o estrarre l'essenza da una varietà di orgetti ed eventi quando non puoi tenerli a mente? Confrontare le cose rispetto a molte variabili è difficile da fare quando non si riesce a ricordare quali sono le variabili o a ricordare il confronto una volta che lo si è fatto.

Con grande acutezza Meltzer si rende conto che la memoria non è un fatto addizionale nei processi cognitivi. L'ostacolo all'organizzazione del pensiero si riflette chiaramente nelle difficoltà dell'elaborazione linguistica del pensiero stesso e nel disagio comunicativo [ibidem.5-6]:

Le conversazioni si trasformavano a volte in un esame. Spesso nel parlare con qualcuno che conoscevo non riuscivo a ricordarne il nome, se fosse sposato o quali fossero stati i nostri rapporti in passato. Non osavo chiedere come stava la moglie di qualcuno perché temevo che mi rispondessero che c'era stato il funerale due anni orima.

La stessa difficoltà si può notare nell'esplicazione della funzione fàtica e nella capacità di tenere viva la conversazione [ibidem. 6]:

Spesso, se non avevo immediatamente l'opportunità di dire ciò che mi veniva in mente, me ne dimenticavo e l'argomento della conversazione cambiava. Quindi non vi erano molte cose di cui potessi discutere.

Insomma il suo deficit linguistico era veramente consistente. Quello che a noi interessa è che, seppur grave, il danno di Meltzer non era «puro». Le conseguenze linguistiche sono evidenti: incapacità di articolare e riferire il ragionamento; incapacità dialogica, in cui al deficit linguistico, si associa un deficit visivo legato dala dimensione comunicativa come il riconoscimento di facce; incapacità di leggere giornali o libri servendosi di un display mentale che renda disponibile l'informazione con una certa continuità temporale. Egli annota con amara ironia che non riusciva a ricordare nemmeno «coloriti petregolezzi»!

Il lamento di Meltzer ci riporta all'ovvia constatazione che la memoria occorre per pronunciare anche la parola o la frase più breve, e che, senza di essa, non saremmo in grado di produrre neanche il più piccolo pezzetto della nostra lingua.

Proprio su questo punto si è discusso molto per capire quanto la memoria sia necessaria per la produzione e la comprensione di una frase. Nel dibattito si sono fronteggiate in passato due tesi contrapposte: una per la quale questo processo dipende direttamente dalla MBT (Clark e Clark 1977), un'altra per la quale ne è del tutto indipendente [Butterworth, Campbell e Howard 1986]. Optare per l'una o per l'altra tesi è molto difficile. Infatti la decisione, da qualsiasi parte si propenda, misconoscerebbe il fatto che il senso di una frase è legato alle presupposizioni e alle assunzioni cui essa è olisticamente collegata: per cui anche se le frasi possono avere la stessa estensione a livello grafico, possono presentare relazioni diverse con le informazioni e le associazioni presenti nella memoria.

Ouesto dato è confermato dagli esperimenti condotti su P.V., una paziente affetta da disturbi della MBT (Vallar e Baddelev 1984; Baddelev 1986, 98-10). Sebbene il suo span di memoria til numero di cifre o altri tipi di elementi che un soggetto riesce mediamente a ricordare nella stessa seguenza con cui è stato. precedentemente presentato) fosse uguale a 2, la signora era in grado di giudicare la verità di frasi come Le pantofole vengono vendute a coppie o Gli arcivescovi vengono prodotti nelle fabbriche e riusciva a sostenere il carico mnemonico dovuto a meccanismi di allungamento della frase, come la verbigerazione, in una frase come Si ritiene comunemente e a ragione che le pantofole appartengono alla categoria degli oggetti che vengono comprati in coppia. Le difficoltà sopraggiungevano quando la comprensione richiedeva una adeguata elaborazione teorica e dunque una maggiore ritenzione.

Era il caso di frasi come Il mondo divide l'equatore in due metà, il nord e il sud oppure È una grande fortuna che la maggior parte dei fiumi possano essere attraversati da ponti che sono abbastanza resistenti da sostenere le macchine. Quando le frasi erano accorciate per cui la prima diventava Il mondo divide l'equatore e la seconda I fiumi sono attraversati da ponti la sua comprensione si normalizzava [Vallar e Baddelev 1987].

La ritenzione dell'informazione è legata dunque non solo alla lunghezza del materiale verbale ma alla sua complessità noetica, cioè al percorso inferenziale che occorre svolgere per comprendere la frase e le sue presupposizioni. Non è solo un fattore di lunghezza o brevità della frase ma di elaborazione semantica della frase medesima a influenzare i rapporti fra linguaggio e memoria.

4. LA MEMORIA DI LAVORO LINGUISTICA: IL «LOOP» FONOLOGICO

Come abbiamo visto i pazienti con forti deficit di ritenzione sono comunque in grado di far fronte ad una larga serie di compiti cognitivi. K. J. legge tranquillamente il giornale, H.M. ha passato il resto della sua vita facendo cruciverba, K.C. è riuscito a riprendere a giocare a scacchi. Insomma molti amnesici sono in grado di usare solo questa memoria dall'attività temporanea e dallo span ridotto, detta memoria di lavoro, che sovrintende allo svolgimento di molte attività mentali cruciali e quotidiane come il ragionamento. l'uso del linguaggio interno. la lettura, il conteggio, il problem solvino, Gli studi ERPs [Daneman e Merikle 1996: Fiebach et al. 2005: Gunter, Wagner e Friederici 2003; Vos e Friederici 2003] hanno confermato dal punto di vista neurofisiologico l'esistenza di questo sistema teorizzato da Baddeley su base cognitivo-sperimentale [Baddeley 2003a; 2003b]. Per King e Kutas [1995] la negatività anteriore lateralizzata a sinistra (LAN) sarebbe il segnale dell'attivazione della memoria di lavoro.

Baddelev e Hitch [1994] hanno distinto delle componenti precise di questo sistema. L'esecutivo centrale ha il compito di focalizzare l'attenzione su uno stimolo e deciderne l'immagazzinamento temporaneo nella memoria di lavoro. Esso inoltre ripartisce la sua attività su uno svariato numero di sub-componenti per lasciarsi libero il compito di seguire e supervisionare stadi di elaborazione più impegnativi. Tra questi sottosistemi i principali sono due: il ciclo fonologico [articulatory loop] e il taccuino visuo-spaziale.

Il ciclo fonologico si suddivide a sua volta in: un magazzino fonologico, in grado di mantenere viva l'informazione linguistica, e un processo di controllo articolatorio che sovrintende alla produzione del linguaggio interno. Le tracce mnestiche all'interno del magazzino fonologico sbiadiscono presto e dopo circa un secondo e mezzo o due non possono essere più recuperate. La traccia mnestica può essere però rinfrescata attraverso il ripasso subvocale, cioè la lettura semisilenziosa che noi utilizziamo spesso per ripeterci alcune nozioni o per leggere meglio un brano. Il processo di controllo articolatorio è infatti «in grado di prendere materiale scritto, convertirlo in un codice fonologico e registrarlo nel magazzino fonologico» [Baddeley 1990, 88-89].

Questo modello spiega molti fenomeni [ibidem, 89-102]. Per fornirne una maggiore comprensione ci focalizzeremo sull'effetto della lunghezza della parola. Questo fenomeno consiste nel fatto che l'ampiezza della memoria diminuisce all'aumentare della lunghezza della parola. Le parole lunghe richiedono al sistema della MBT un surplus di lavoro che essa non è in grado di svolgere adeguatamente. Alcuni ingegnosi esperimenti [Baddelev, Thomson e Buchanan 1975] hanno mostrato che l'effetto di lunghezza della parola non è tanto legato all'estensione della stringa lessicale quanto alla rapidità di pronuncia e di lettura del singolo individuo. Il primo esperimento ha mostrato come i soggetti tendono a ricordare meno bene parole contenenti suoni vocalici lunghi come harpoon o Friday e meglio parole con lo stesso numero di sillabe ma che vengono pronunciate più rapidamente come bishop o wicket.

Questo punto mi sembra rilevante per la linguistica. Le parole usate nell'esperimento infatti sono parole di una lingua come quella inglese in cui vi è una differenza sostanziale tra grafia e pronuncia. Si può legittimamente ipotizzare che la relazione fra ampiezza di memoria e misura delle parole possa variare da lingua a lingua. Ellis e Hennelly [1980] hanno notato che i bambini di lingua gallese posseggono un'ampiezza di span per i numeri inferiore a quella dei bambini di lingua inglese. A spiegare questa curiosa differenza è il fatto che nella lingua gallese i suoni che esprimono i numeri sono molto lunghi e questo causa un impiego maggiore della memoria di lavoro. Questi dati sono coerenti con i risultati di Logie e Baddeley [1987] che prevedono una implicazione del ciclo fonologico nel calcolo e nei compiti aritmetici mentali.

Inoltre la rapidità di pronuncia è un fatto che solo in parte è lessicalizzato e grammaticalizzato. Esso può dipendere dalla capacità del soggetto di scorrere la parola più o meno rapidamente. Nicholson [1981] ha dimostrato che l'aumento dello span dei numeri nei bambini più grandi è dovuto alla loro maggiore capacità di utilizzare il ripasso subvocale e dunque di attivare il loop fonologico.

Anche gli studi ERPs dimostrano che le capacità di span dei singoli soggetti influenza la loro elaborazione linguistica [Daneman e Carpenter 1980; Just e Carpenter 1992]. Soggetti con maggiori capacità di memoria di lavoro mostrano una variazione positiva lenta frontale che perdura per tutta la durata della presentazione di una proposizione relativa: individui con una comprensione mediocre non mostrano questa positività lenta, ma elicitano un aumento delle componenti visive-sensoriali precoci come la P1-N1-P2. Questo suggerisce che individui con minori capacità di memoria di lavoro hanno usato maggiori risorse per l'elaborazione percettiva di livello inferiore avendo quindi meno risorse da dedicare a processi linguistici superiori

A questo proposito è interessante notare come i potenziali di individui anziani normali per frasi, sia transitive che relative oggettive, rassomigliano moltissimo a quelli di individui più giovani con una comprensione mediocre [Kutas e King 1996]. Un compito cognitivo fondamentale in cui la subvocalizzazione svolge un ruolo predominante è la lettura. L'apprendimento della lettura, infatti, aumenta lo span di memoria e la consapevolezza fonologica e questi, a loro volta, contribuiscono al miglioramento della prestazione della lettura. Baddeley afferma che le persone sentono il materiale letto «come se venisse pronunciato da una qualche forma di voce interiore [...]. Benché però esso possa essere importante quando si impara a leggere, pare che svolga una funzione molto meno cruciale nel lettore adulto, che ha una maggiore facilità di lettura» [Baddelev 1982, 199].

La subvocalizzazione comunque entra in funzione anche negli adulti durante la lettura di testi difficili dove soppesare le singole parole e la loro connessione è di estrema importanza per il soggetto. Secondo Baddelev la subvocalizzazione non sarebbe presente nella lettura dei romanzi dove però continuerebbe ad operare una sorta di voce interna legata ad un'altra componente della memoria di lavoro: il sistema di immaginazione uditiva «connesso all'anello articolatorio ma diverso da esso» [ibidem. 200].

5. STRUTTURE E PROCESSI: I LIVELLI DI ELABORAZIONE

Il nostro excursus sulla memoria di lavoro ha mostrato come una normale comprensione linguistica implica l'interrelazione continua fra elaborazione percettiva, elaborazione mnestica ed elaborazione linguistica [Caplan e Waters 1999]. Ulteriori conferme a questa prospettiva cognitiva del funzionamento del linguaggio provengono dagli studi sulla fase della codifica e in particolare sulla ricchezza e profondità della codifica semantica.

Craik e Lockart [1972] hanno dimostrato che la codifica non riguarda esclusivamente la relazione cieca e preordinata tra MBT e MLT ma dipende innanzitutto dalle caratteristiche e dalla natura del materiale da ricordare. L'apprendimento del materiale linguistico ad esempio non è mediato solo dal meccanismo della ripetizione verbale. La sfera semantica possiede un reticolo di associazioni e di legami che hanno una loro presa diretta sulla memoria indipendentemente dalla frequenza e dalla ripetizione. Questa codifica ha un'immediatezza superiore a quella della percezione sensoriale. Mostriamo la veridicità di questo assunto con un esempio. Prendiamo una lista di parole:

La parola è in lettere maiuscole?	principe	SÌ-NO
La parola fa rima con cane?	PANĖ	SÌ-NO
È il nome di un animale?	tigre	SÌ-NO
La parola fa rima con spillo?	STILE	SÌ-NO
È il nome di un frutto?	BOCCETTA	SÌ-NO
La parola è in lettere maiuscole?	FORBICI	SÌ-NO
La parola fa rima con castello?	cielo	SÌ-NO
È il nome di un gioco?	PAVIMENTO	SÌ-NO
La parola fa rima con caldo?	SMERALDO	SÌ-NO
La parola è in lettere maiuscole?	lampada	SÌ-NO

L'esperimento consiste nel provare a memorizzare le parole elencate sopra rispondendo alla domanda che viene fatta ponendo un segno sul SÌ o sul NO. Le domande si riferiscono a tre tipi diversi di codifica: quella superficiale relativa al carattere grafico della parola (maiuscolo o minuscolo); quella sonora relativa alla possibilità che la parola faccia rima con quella della domanda; quella semantica in cui si fa riferimento alla categoria di appartenenza della parola. Dodo avere effettuato il compito bisogna provare a ricordare le parole della lista in un ordine casuale. Il risultato scoperto da Craik è che la codifica semantica permette un ricordo più efficace delle parole di quanto non faccia una codifica sonora, anche se quest'ultima resta più vantaggiosa della semplice codifica superficiale. Esistono dunque dei livelli di profondità dell'elaborazione dell'informazione che influenzano con maggiore o minore intensità la forza con cui uno stimolo è immagazzinato nella memoria e influenzano altresì le possibilità che questo item venga recuperato. Il principio chiave della teoria è che «la durata della traccia è una funzione positiva della profondità di elaborazione. dove la profondità si riferisce a gradi più ampi di implicazione semantica» [Craik e Tulving 1975, 268].

In modo più preciso la codifica semantica analizzata è di due tipi. Una riguarda l'appartenenza di una parola a una categoria particolare [x è un pesce?], l'altra fa riferimento alla adeguatezza dell'inserimento di una parola all'interno di una frase. Si deve rispondere a domande del tipo: La parola topo può essere inserita nella frase Il gatto mangiò il ... ?. Come si vede questo livello semantico di elaborazione è legato al problema della verità e della falsità di una proposizione. Il problema del vero e del falso non è di natura secondaria per la memorizzazione. Craik e Tulving hanno scoperto che quando una domanda implica una risposta positiva e la frase è vera il compito di rievocazione è facilitato. Secondo gli autori «nei casi in cui è prodotta una risposta positiva la domanda di codifica e la parola bersaglio formano un'unità coerente e integrata» [ibidem, 281]. Questa coesione è molto forte nelle domande di natura semantica come «Il ragazzo incontrò un ... per strada ['AMICO'?]» dove la risposta è affermativa e la parola amico entra in modo significativo nel corpo della proposizione. Ciò non avviene nel caso in cui la risposta è negativa come «Il ragazzo incontrò ... per strada ['DISCORSO'?] dove l'inserimento della parola «DISCORSO» produce una sensazione di incongruità.

Per provare che l'integrazione e la cossione delle unità semantiche creano queste differenze, i soggetti furono sottoposti ad un secondo test dove la natura delle domande lasciava prevedere un risultaro equivalente sia per la condizione positiva che per quella negativa: « Questo oggetto è più grande di una sedia?» (caso positivo: CASA" e CAMION: caso negativo TOPO e "PUNTA"). La probabilità di rievocazione non mostrava grandi differenze per le due condizioni. Questo vuol dire che negli esperimenti precedenti e nel caso sopraccitato di inserzione testuale le decisioni negative erano associate alle parole presentate con una minore forza semantica e di codifica. Non è dunque all tipo di risposta data alla parola presentata che e responsabile delle differenze nei successivi atti di richiamo e di riconoscimento, ma piuttosto la ricchezza e l'elaborazione della codificas lidhem. 2821.

La teoria dei Iwelli di elaborazione ha avuto due diversi sviluppi. Il primo riguarda il ruolo della codifica nei processi di recupero. Le nozioni salienti sono
la formulazione del principio di specificità di codifica e la costruzione della
teoria della ecforia sinergica. Su questo punto torneremo nel 5.5.1. Il secondo
sviluppo della teoria dei liveli di elaborazione riguarda l'approfondimento delle
relazioni fra codifica sensoriale, soprattutto visiva, e codifica semantico-verbale.
Secondo la teoria dell'elaborazione adeguata al trasferimento (Morris, Bransford
e Franks 1977) in alcune situazioni il recupero può essere favorito da elaborazioni superficiali. Fisher e Craik [1977] hanno replicato che «a parità di altre
condizioni, la codifica semantica porta ad un apprendimento migliore rispetto
alla codifica fonologica» (Eaddeley 1990, 191). Essa è infatti la codifica più
importante presente nella nostra vita quotidiana e de invece molto improbabile
imbatterci in un giudizio di rima o di struttura grafica.

5.1. Il nesso parola-suggerimento

Prima di esporre nel dettaglio la teoria del recupero di Tulving occorre approfondire la distinzione fra riconoscimento e rievocazione. Per comprenderla ci serviremo di un esempio squisitamente linguistico.

Tutti noi possediamo una memoria delle parole della nostra lingua. Ora è un dato intuitivo che facciamo meno fatica a ricordarle mentre le legigiamo e le vediamo già scritte nella pagina di un libro che non quando siamo costretti a richiamarle direttamente per scrivere o per ripetree il contenuto di un libro senza poterlo usare come supporto per la memoria. Lattività che compiamo quando leggiamo è un'attività di percezione delle parole che noi riconosciamo appunto come appartenenti alla lingua italiana e come dotate di un certo significato. Lattività che svolgiamo quando scriviamo o quando parliamo a braccio è un'attività di rievocazione. Questa attività è senza dubbio più difficile di quella del riconoscimento.

Un'altra conferma civiene dall'acquisizione della seconda lingua. Chi ha imparato una lingua avrà sperimentato su di sé che quando si è immersi nell'ambiente linguistico straniero si è facilitati a parlare la lingua dalla presenza di numerosi supporti per la memoria: i cartelloni pubblicitari, le insegne dei negozi ecc. Quando si torna nel proprio paese d'origine tutti questi aiuti non ci sono e la nostra memoria di riconoscimento non può sostenerci nelle nostre prestazioni linguistiche cosiché dobbiamo interpellare la memoria di rievocazione e dobbiamo attivare con più fatica il nostro ricordo. In generale noi riusciamo ad aiutare i processi di rievocazione apprestando tutta una serie di protesi della memoria, dal posi-ti al block notes, che servono ad innescare con più immediatezza questi processi legandoli alla memoria di riconoscimento. In questo caso si parla di rievocazione guidata, mentre negli altri casi si parla di rievocazione libera.

Il linguaggio concatena dentro il suo sistema queste due memorie legandole in modo netto a due attività fondamentali del suo esercizio: l'ascoltare e il leggere da un lato, legati alla memoria di riconoscimento, e il parlare e lo scrivere dall'altra, legati alla memoria di riconoscimento e memoria di rievocazione. L'asimmettia fra memoria di rievocazione corrisponde così ai due assi fondamentali della produzione e della compressione li pinuistica.

Forti di questa distinzione possiamo complicare questo quadro teorico accennando al cosiddetto paradosso della frequenza: le parole ad alta frequenza d'uso vengono rievocate meglio delle parole a bassa frequenza ma vengono riconosciute peggio. Quindi sei nu ne sperimento si fa imparare ai soggetti una lista di parole molto note, nel momento in cui andremo a ripresentare le parole della lista in modo casuale scopriremo che i nostri soggetti rievocano facilmente le parole grazie all'aiuto di alcuni suggerimenti, ma, davanti alle parole già presentate nella lista, essi risponderanno di non riconoscerie come parole precedentemente apprese. La paradossalità del fenomeno deriva dal fatto che, come abbiamo spiegato, il riconoscimento è naturalmente più semplice della rievocazione. I modi per spiegare il paradosso sono due (Baddelev 1990, 310):

- 1. La frequenza delle parole ci aiuta a recuperare o a produrre un a parola. In un compito di riconoscimento la parola non deve essere prodotta, ma viene presentata da qualcun altro, con il risultato che la frequenza della parola diviene meno importante. Questa idea fornisce una spiegazione alla mancanza di vantaggio del riconoscimento, ma non spiega perché le parole più frequenti dovrebbero essere più difficiil da riconoscere.
- 2. Una parola ad alta frequenza d'uso ci é familiare già in partenza, a prescindere dal fatto che sia stata presentata nella lista di apprendimento di un test. Invece la presentazione di una parola rara può diventare un evento più discriminabile e saliente per il riconoscimento. La rievocazione sarebbe inoltre più compilicata perché si baserebbe su due static uno in cui vengono generate le parole utili di cui il soggetto ha bisogno, l'altro in cui la parola già attivata viene riconosciuta come quella giusta [Anderson e Bower 1972]. La rievocazione sarebbe allora più difficile del riconoscimento perché implicherebbe due passaggi anziché uno. Al di la di questi tentativi Tulving e Thomson [1973] hanno dimostrato che l'iptoesti del doppio stadio generazione-riconoscimento non coglie il bersaglio e.

che è un'altra la strada per spiegare il fenomeno del paradosso della frequenza.

Analizziamo allora i dati dell'esperimento con l'ajuto della tabella 4.1:

TAPPETINO

DEBOLE

LISTA A			LISTAB		
Suggerimento	SUGGERIMENTO	PAROLA-	SUGGERIMENTO	SUGGERIMENTO	PAROLA-
Interno debole	ESTERNOFORTE	BERSAGLIO	INTERNO DEBOLE	ESTERNOFORTE	BERSAGLIO
suolo	caldo	FREDDO	arma	dito	MANO
formaggio	erba	VERDE	porta	colore	ROSSO
comando	donna	UOMO	verme	mangiare	CIBO
fischio	tennis	PALLA	granaio	pulito	SPORCO
frutto	bocciolo	FIORE	adulto	fatica	LAVORO
casa	amaro	DOLCE	pensiero	muto	STUPIDO

arrotolare

coraggioso forte

tappeto

LAVARE

SEDIA

TAB.4.1, L'esperimento di Tulving e Thomson

sapone

tavola

desiderio

colla

Come si può notare dalla tabella ad ogni gruppo di soggetti venivano presentate tre parole. Sarà evidente a tutti come la relazione semantica fra i suggerimenti esterni e le parole-bersaglio è molto forte. Chiunque può sperimentare questo fatto coprendo l'elenco delle parole-bersaglio e provando a indovinare quali sono quelle scelte da Tulving e Thomson. Alla parola freddo chiunque associerà più facilmente la parola CALDO e alla parola amaro la parola DOLCE. La relazione che sussiste fra i suggerimenti esterni forti e la parola-bersaglio è una relazione semantica del tipo di quelle codificate dalla linguistica tradizionale. Uomo e donna esprimono un rapporto di opposizione, caldo e freddo un rapporto di antonimia graduabile, dito e mano un rapporto di meronimia ecc. Tulving e Thomson lavorano dunque sulle relazioni tra le parole interne alla memoria semantica, le quali appartengono alle strutture intersoggettive del linguaggio.

Si potrebbe obiettare che queste relazioni sono decise apriori e che i soggetti, se richiesti, potrebbero formulare relazioni più private e personali. Abbiamo già detto che questo è un dato di cui tener conto, ma non possiamo negare che le relazioni semantiche di una lingua si riferiscano ad un'organizzazione del lessico che ha una radice pubblica condivisa la quale influenza prepotentemente il nostro lessico mentale personale. Le relazioni semantiche sono forti anche dal punto di vista soggettivo perché si riferiscono alla frequenza con cui i parlanti le utilizzano nei loro atti linguistici quotidiani. La loro condivisibilità non è dunque imposta dall'alto attraverso il sistema dei valori della langue ma possiede una base statistica e sociale decisiva.

Ma torniamo all'esperimento e diamo uno sguardo ai suggerimenti interni deboli. Le loro relazioni semantiche con le parole-target sono meno scontate e meno stringenti. La relazione tra formaggio e VERDE sarà forte solo per un ghiottissimo mangiatore di gorgonzola! E così la relazione pensiero e STUPIDO è marginale e improbabile. Forse lo è di meno la relazione fra comando e UOMO! Qualcuno potrebbe anzi malignare che per gli appartenenti al sesso forte questa relazione è molto più stringente di quella, assai codificata, tra i complementari donna e UOMO! A parte queste scherzose considerazioni il dato interessante è che i suggerimenti deboli si comportano nel test come degli eventi della vita personale dei soggetti e la loro codifica durante il training avviene all'interno della memoria episodica. È per questo che il test permette di saggiare anche la

relazione fra la memoria soggettiva di tipo episodico e la memoria intersoggettiva di tipo semantico.

Nell'esperimento i soggetti studiano una lista di parole-bersaglio, come SEDIA, ognuna presentata in relazione con uno specifico input che serve da suggerimento, come ad esempio colla. Dal momento che i soggetti si aspettano di essere testati con dei suggerimenti, essi presumibilmente codificano le parole-bersaglio in una relazione stretta con lo stimolo che fa da suggerimento. Tulving dimostra che, tramite il training, il suggerimento debole viene ad assumere un ruolo altrettanto forte del suggerimento esterno.

Questo dimostra che fra la memoria semantica, relativa ai suggerimenti esterni forti, e la memoria episodica, relativa ai suggerimenti interni deboli è presente una comunicazione e una interdipendenza che si esprime proprio nel nesso parola+suggerimento. È in riferimento a questo nesso che Tulving spiega il fenomeno per cui le parole che vengono rievocate dai soggetti attraverso i suggerimenti (rievocazione guidata) non vengono da loro riconosciute quando si domanda loro se le hanno già viste durante il training ovvero se sono state. presentate loro all'interno di una lista di addestramento. È da questi test che emerge il paradosso enunciato sopra. Tulving e Thomson [1973, 367] cercano di fornire una risposta a questa stranezza:

un altro approccio alla interpretazione del fallimento del riconoscimento può cominciare da una distinzione fra unità nominale e unità funzionale di memoria [... infatti ...] Il fallimento del riconoscimento di parole che erano state richiamate abbastanza bene in risposta ad uno specifico suggerimento-input nel nostro esperimento poteva anche essere avvenuto perché lo stimolo del vecchio test non era confrontabile nel test di riconoscimento con l'unità funzionale di memoria, cioè con quel complesso costituito dall'input-suggerimento e dalla parola-bersaglio. Se questa unità nella sua globalità venisse presentata ai fini del riconoscimento, i soggetti non avrebbero probabilmente grosse difficoltà nell'effettuarlo.

Il dato ci fa comprendere che i soggetti avevano memorizzato il nesso parolasuggerimento come un tutt'uno e che dunque al momento del riconoscimento non riuscivano a ricordare una parte isolata di questo nesso cioè il singolo suggerimento. Questa ipotesi si lega al fatto che «un suggerimento è operante nella estensione del sistema cognitivo che può codificare lo stesso suggerimento e il bersaglio come se fossero un'unità integrata e coesa» [Craik e Tulving 1975. 2841. Secondo loro «la nozione può fornire delle linee guida per la identificazione di una unità di analisi più adeguata di quella stabilita dallo sperimentatore»

In questa prospettiva si passa da un'idea di memoria come rete di associazione di parole, o unità nominali, a un'idea di memoria come associazione di unità funzionali, cioè di nessi di parole e suggerimenti, come luogo di interscambio fra esperienza e linguaggio, fra memoria episodica e memoria semantica, tra esperienza linguistica individuale-soggettiva e struttura del linguaggio socialmente condivisa, fra ambiente esterno e «ambiente cognitivo interno» della mente. Il lessico mentale si struttura a partire da un'interazione con la realtà esterna che ha il suo fondamento nel nesso parola-suggerimento. Il ricordo non è il semplice risveglio di una traccia mnestica ma è una operazione sinergica fra traccia e suggerimento, un processo di cooperazione fra esperienze di codifica appartenenti alla memoria episodica ed autobiografica del soggetto, relazioni semantiche culturalizzate presenti nella sua mente e stimoli del ricordo presenti nel contesto del recupero.

Per spiegare il complesso sistema della memoria che emerge da questa scoperta Tulving [1983] ha proposto quella che abbiamo chiamato prima - nel § 5 – «teoria dell'ecforia sinergica». L'apprendimento coinvolge la costituzione di una traccia mnestica, mentre il ricordare coinvolge un processo simbiotico in cui la traccia mnestica e lo stimolo-aiuto interagiscono per produrre la rievocazione cosciente degli eventi precedenti. La rievocazione può essere prodotta come risposta, o usata come base, per altri processi come la ricerca di ulteriori dati o ulteriori suggerimenti per il recupero. All'interno di questo processo, chiamato General Abstract Processing System (GAPS), riveste un ruolo fondamentale il principio di specificità di codifica [Roncato e Zucco 1993, 2821 secondo cui:

l'efficacia di un certo suggerimento dipende dalla quantità di informazioni che, in fase di recupero, combacia con le informazioni disponibili al momento dell'acquisizione. In sostanza uno stimolo richiama un'esperienza se era effettivamente presente quando facevamo questa esperienza.

Riprendendo la nota distinzione tra disponibilità e accessibilità possiamo dire che un ricordo può essere disponibile in memoria ma non accessibile perché non scatta il meccanismo della specificità di codifica, cioè non è presente al momento del recupero il suggerimento che ripropone in modo efficace quel contesto ovvero il nesso evento-suggerimento.

6. ONTOLOGIA DELLA MEMORIA

L'esperimento di Tulving conferma la stretta relazione che intercorre fra memoria semantica-pubblica e memoria episodica-personale. Tutta la sua teoria porta ad una riconsiderazione del ruolo dell'esperienza soggettiva della memoria. Questa dimensione è molto importante per comprendere la relazione che sussiste fra il linguaggio e la realtà del mondo di cui il linguaggio dovrebbe essere specchio oggettivo e fedele. Fra le tante suggestioni che gli studi sulla memoria possono fornire alle scienze del linguaggio vi è sicuramente quella di «ricordare» come il problema della verità non si pone solo su base logico-vero-funzionale ma investe in modo radicale tutta la relazione fra il linguaggio e la realtà e il modo in cui la memoria ci fornisce i dati per un'aderenza veridica ai fatti. Da molti esperimenti si è potuto constatare come sia forte la tendenza dei soggetti a ricostruire gli eventi mirando non ad un rispecchiamento concreto e fattuale della realtà ma ad una semplice coerenza linguistica e testuale del materiale del ricordo. Il più delle volte i soggetti tendono a costruire un testo coerente in se stesso più che una riproduzione fedele del reale.

Tra i fenomeni che possono farci riflettere su queste congetture vi è senza dubbio quello della **confabulazione autobiografica**. di cui discuteremo qui un caso.

Ř Jera un uomo di 42 anni che, a seguito di un incidente stradale, aveva subito una morragia al lobo temporale sinistro, ai gangli basali e ai lobi parietale e frontale posteriore-laterale [Baddeley e Wilson 1986; 1988a; 1988b]. Egli raccontava i suoi ricordi in modo molto dettagliato. I suoi racconti però differivano da quelli degli annessi i non frontali perché essi si mostravano fantasiosi quando venivano verificati con riscontri concreti. Questo racconto fantasioso, ma verosimile e dettagliato, è ouello che si chiama evonfabulazione».

R.J. raccontava l'incidente attraverso resoconti estremamente variabili, con descrizioni verbatim esconnesse della conversazione con il conducente. Il resocomto dell'incidente era diverso ogni volta che gli veniva chiesto di fornirine uno. Egli dunque si affidava alla sua fantasia narrativa. Essendo timasto incosciente per parecchie settimane dopo l'incidente, era improbabile che ricordasseveramente ogni cosa. Un esempio del suo resoconto ordinato e confuso dell'incidente è il seguente. Richiesto di dire cosa gli faceva ricordare la parola-suggerimento lettera cell disse Baddeleve e Wiskon 1988b. 2201:

R.J.: Io ho spedito una lettera al mio vecchio zio nel sud del Galles quando il mio fratello più giovane venne ucciso, dicendo proprio questo.

B.W.: Può ricordare le parole che ha usato?

R.J.: Cara zia Gertrude, io sono dispiaciuto di riferirti che Martin è stato ucciso in un incidente di macchina, è molto triste e noi siamo molto dispiaciuti, che io posso dire cose di tale sorta realmenta.

B.W.: Ha avuto davvero un fratello?

R.J.: Io ne ho tre adesso. Io ne ho due adesso. Uno più vecchio e uno più giovane.

B.W.: Come si chiamano?

R.J.: Martin e James B.W.: Chi è stato ucciso allora?

R.L. Martin

B.W.: Dunque lei ha due fratelli di nome Martin?

R.J.: In realtà in questi giorni noi abbiamo un Martin, dunque una madre ne ha un altro e noi chiamiamo questo Martin. Ecco. Io penso che lei ha avvertito un certo morboso rispetto per questa cosa e così lo ha chiamato Martin e così noi abbiamo avuto due Martin suppongo. Sì oppure potrebbe essere che erano due Martin.

In un altro test successivo a questo R, I. affermò di avere due fratelli di nome Martin e James, ma negò che qualcuno di essì avesse subito un pericoloso incidente stradale. In questo specífico caso si tende a parlare di «confabulazione spontanea» per distinguerla dalla confabulazione provocata all'interno dei test, come accade quando i soggetti inseriscono fasi eventi nella rievocazione di brani di prosa [Schnider 2003]. Nella confabulazione spontanea i pazienti si fissanosu un tema della loro vita personale e lo rielaborano di continuo, oppure narrano eventi straordinari di sapore cinematografico. A questo punto potremmo porci una domanda importante: perché in alcuni tipi di amnesie compare questa attività linguistica di tipo narrativo, in modalità così esorbitanti e con questa dinamica così continua e intensa? Un'ipotesi è che questa stranezza dipenda dalla «combinazione tra una memoria molto compromessa e la mancanza di un adeguato controllo attentivo sulla memoria di lavoro, un deficit cioè dell'esecutivo centrale [...] i pazienti con un deficit nel funzionamento di questo sistema sembrano essere incapaci di differenziare un ricordo autentico da un'associazione inventata e, nel difficile test di separare la verità dall'invenzione, optano spesso per l'invenzione fantasiosa» [Baddelev 1990, 356],

Essendo l'esecutivo centrale dipendente dalla attività del lobo frontale, la confabulazione è spesso associata a lesioni focali di questa zona del cervello. Il dibattito attorno alle origini del fenomeno è vasto. Baddeley e Wilson [1988b, 218] forniscono una descrizione dettagliata dei disturbi di R.J. in relazione a quelli di altri due amnesici relativamente puri: K.J. e D.B. Essi concludono che «l'oscuramento della memoria autobiografica occorre anche in amnesici con danno non frontale [...]. Comunque è solo quando questo è combinato con il problema disesecutivo del controllo e del monitoraggio del recupero che la confabulazione sembra emergere» [ibidem, 227].

Ma cosa dice alle scienze del linguaggio questa complicata ricostruzione linguistica della realtà? È chiaro che R.J. cercava di riempire i vuoti della sua conoscenza concreta e fattuale, dovuta all'amnesia, attraverso una coerentizzazione narrativa. testuale, di quel vuoto empirico. Egli non usava la confabulazione per mentire. Ciò che ci appare come una menzogna era il suo modo paradossalmente «razionale» di orientarsi in una realtà piena di vuoti e di crepe. Era il suo modo di riempire di tinte e forme sbiadite il proprio lacunoso ritratto autobiografico.

Anche con la moglie egli sfruttava questa interessante dote. Alcune volte andava a casa a trascorrere i fine settimana. Stava con la moglie a letto quando cominciò a dirle:

- R.J.: Perché continui a dire alla gente che siamo sposati?
- Lei: Ma noi siamo sposati: abbiamo anche due bambini
- R.J.: Questo non significa che siamo sposati!

La moglie allora si alzò dal letto e andò a prendere le foto del matrimonio e lui allora, guardandole, si mise a ridere e rispose: Quel tipo mi somiglia, ma non sono certamente io!

La confabulazione era talmente insita nel meccanismo della sua mente che un giorno lo si vide trascinare la sedia a rotelle di un altro paziente per la strada. Egli stava portando l'amico a vedere un acquedotto costruito da lui. R.J. era un ingegnere civile e aveva partecipato alla costruzione di un acquedotto molti anni prima. Solo che esso distava 40 miglia dall'ospedale dove era ospite, R.I. aveva dunque ripristinato un ricordo, ma non potendolo inquadrare entro un contesto reale adeguato, aveva ricreato da sé, fantasiosamente, un frame entro cui incastonarlo

Un'interpretazione più globale della confabulazione potrebbe essere quella secondo cui la memoria socialmente condivisa del linguaggio diventa l'appiglio cui gli amnesici si possono aggrappare per uscire fuori dal dramma dell'oblio episodico e soggettivo. Seguendo l'ipotesi di Gazzaniga [1998] la tendenza ad una coerenza testuale più che fattuale dei ricordi, lungi dall'essere un effetto meramente patologico, potrebbe risultare una condizione fisiologica della mente umana cioè una tensione naturale presente anche nei soggetti più avvertiti e coscienti [Corballis 2003; Funnell, Corballis e Gazzaniga 2001].

A dimostrarlo sono anche tutte le ricerche riguardanti la ricostruttività della memoria del passato [Barclav e Wellman 1986; Neisser 1976; Koriat, Goldsmith e Pansky 2000]. Già nel 1932 sir Bartlett, rifiutando di confinare alle sillabe senza senso i materiali degli esperimenti [Ebbinghaus 1885-1964], aveva mostrato come i soggetti ricostruissero un piccolo testo letterario (La guerra degli spettri) colmando le lacune della loro memoria attraverso dei loro schemi personali e soggettivi. Le ricostruzioni erano dotate di una loro coerenza ma potevano non avere più alcun legame con il racconto di partenza.

Barclay e Wellman [1986, 89] hanno affermato che «i ricordi della maggioranza degli eventi della vita quotidiana sono [...] trasformati, distorti o dimenticati». Anche se Brewer [1988: 1995] ha portato conferme empiriche di una visione solo parzialmente ricostruttiva, il fenomeno ci porta a riflettere sulla pervasività che il mondo del linguaggio ha sul mondo della realtà.

Questa pervasività emerge non solo attraverso la tesi della tendenza ad una coerenza linguistica e non fattuale della memoria, ma anche nell'ipotesi più generale secondo cui esiste un doppio ruolo del linguaggio nei processi cognitivi. Il linguaggio non è solo lo specchio fedele della realtà, ma per motivi complessi può diventarne anche la lente deformante. Prove della plausibilità di questa congettura provengono dallo studio delle distorsioni [Schacter 1997] come quelle che sono implicate nei casi di interferenza.

In psicologia si distinguono due forme di interferenza: una proattiva e una retroattiva. La prima impedisce di codificare una nuova informazione, la seconda impedisce di ricordare con esattezza una vecchia informazione già posseduta dal soggetto perché ad esempio la rielaborazione in termini verbali di una memoria codificata visivamente porta ad un'inaccessibilità o a una distorsione del ricordo. È il caso della interferenza intermodale. Una delle dimostrazioni più note dell'interferenza del linguaggio sul ricordo visivo è dovuta a Loftus e Palmer [1974]. Ai soggetti veniva mostrato un filmato in cui una macchina ne tamponava un'altra. In seguito i soggetti venivano testati attraverso domande precise in cui veniva fatto variare lo spettro semantico della parola inglese hit («tamponare»).

Ad essa venivano sostituite di volta in volta le parole:

smash («fracassarsi») collide («collidere, sbattere») hump («fare il botto») contact («urtarsi»)

Il mutamento semantico di hit int luenzava la stima della velocità della macchina da parte del s'oggetto. Con smashed si aveva la stima più alta, seguita da collided.bumped. hit. mentre contacted induceva la stima più bassa. Quando, una settimana più tardi, ai soggetti venne chiesto se nell'incidente si fossero rotti dei vetri, coloro che erano stati testati usando la parola smashed riportavano più frequentemente, e scorrettamente, che i vetri delle macchine si erano rotti. L'esperimento dimostra che l'intrusione di segni verbali nella ricostruzione di un evento interferisce con i segni visivi portando ad una distorsione e ad un plagio della memoria visiva.

Come si vede l'interferenza è un fenomeno fisiologico della mente umana ed opera portando i soggetti alla distorsione in modo naturale e inconscio. Una dimostrazione ampia di ciò è contenuta nello studio generale condotto da Loftus e Palmer [1979] sui meccanismi della testimonianza oculare.

Richiamando quanto detto in precedenza (§ 3.1) possiamo dire che tra memoria visiva e memoria linguistica sussiste una relazione complessa e contraddittoria. Come hanno mostrato Rumelhart, e McLelland [1981] la modalità sensoriale visiva e quella semantica si attivano in parallelo producendo un feedback che favorisce il riconoscimento della parola. Questo dato può integrarsi bene con la teoria del doppio codice [Paivio 1986] secondo cui una codifica in più modalità. visive e verbali, può favorire i processi del recupero.

D'altra parte le due modalità possono entrare in conflitto provocando distorsioni dei ricordi. Queste evidenze sono fisiologicamente legate con la natura costruttiva della memoria visiva che emerge dalla capacità che noi possediamo di ricostruire la forma di un oggetto a partire da elementi minimi come punti o linee.

Nella mente non è presente una fotografia dell'oggetto bensì delle regole di costruzione della sua forma [Gregory 1998]. La natura della memoria visiva è decisamente costruttiva. Come suggerisce Corballis [2003] l'emisfero sinistro accede all'informazione visiva e possiede una sorta di interprete dedicato alla costruzione del mondo visivo.

Il paziente J.W., sottoposto a callosotomia, oltre a non poter produrre espressioni linguistiche, non poteva comprendere il linguaggio nella modalità parlata e scritta. Dopo 14 anni dalla sua operazione ha mostrato di poter nominare il 25% degli stimoli presentati al suo campo visivo sinistro. Un anno più tardi egli ha potuto nominare il 60% di questi stimoli. Secondo Gazzaniga e colleghi [1996] questa sorprendente plasticità neuronale a lungo termine dipende da una collaborazione tra gli emisferi in cui gioca un ruolo fondamentale l'interprete.

Mi sembra che questi risultati possano confermare che lo studio del linguaggio non può procedere senza una comprensione della sua relazione con i processi cognitivi e che il linguaggio stesso sembra il candidato più appropriato ad esprimere non solo i concetti e i desideri degli uomini, ma anche la vita muta e nascosta del cervello.

Modelli neurocomputazionali del linguaggio

Un metodo di indagine tipico delle scienze cognitive consiste nel riprodurre in algoritmi eseguibili da un computer certi aspetti di capacità umane quali il linguaggio. Una garanzia che questeinvenzionimatematiche abbiano attinenza con gli effettivi processi mentali può essere ottenuta cercando di imitare il tipo di calcolo attuato dal cervello. Viene qui illustrato il ventaglio di metodi scaturiti da questa idea, metodi che hanno trovato spazio soprattutto nello studio dello sviluppo del linguaggio, in aspetti quali fonologia, sintassi e semantica.

1. SPIEGAZIONI DAL COMPUTER

È costituitva delle scienze cognitive l'aspettativa che un programma eseguito su un computer possa produrre spiegazioni riguardo certi comportamenti umani [Johnson-Laird, 1988]. Non è una semplice fiducia epidermica poiché hatrovato suffragio in importanti test filosofiche, esposte criticamente nel capitolo I, § 6. Volendo riassumere in un ragionamento lapidario, se è vero che nella mente le cose vanno come un calcolo, e il computer è fatto per eseguire calcoli, quale strumento migliore per arrivare a comprenderli? Per questa metodologia, o anche per il principio teorico che la conforta, è in uso l'appellativo computazionalismo. Ma non solo: parlando di linguaggio il computer ha assunto un ruolo ancor più strategico rispetto ad altri fenomeni indagati dalle scienze cognitive. È proprio il linguaggio ad aver instaurato un connubio tutto speciale con il mondo informatico, legato soprattutto al complesso metodologico che va sotto il nome di grammatiche, ideato da Noam Chomsky, di cui il capitolo III, § 2, è urillustrazione introduttiva.

Complice una certa coincidenza storica, nella fase in cui i computer maturavano nella macchina programmabile universale oggi nota a tutti, non fu trovato niente

di meglio che il linguaggio stesso, come mezzo più generale per esprimere passaggi algoritmici, e nacque il concetto di elinguaggio di programmazione», la cui realizzazione è fondata proprio sugli strumenti delle grammatiche generative [Barkus 1959].

Per un cognitivista le quotazioni del computer come decifratore di fenomeni mentali non possono quindi che salire alle stelle quando si tratti di linguaggio, conoscendo il così intimo connubio tra il suo funzionamento e quello della sintassi (secondo Chomsky) umana. Oltre a tutti questi buoni motivi, la fiducia nel ruolo epistemico dei computer ha anche dalla sua una lunga storia di progetti, entusiasmi, ricerche, da quando, circa mezzo secolo fa, nacque la disciplina denominata intelligenza artificiale [Crevier 1993].

1.1. Le difficoltà del computazionalismo come spiegazione

Èin questa stessa storia che però emergono elementi che cominciano ad incrinare la fiducia nel metodo computazionale. L'intelligienza artificiale, che accomuna interessi eterogenei (non solo cognitivi) nel tentativo di dotare i computer di capacità simili a quelle umane, ha subito le maggiori delusioni proprio su quello che avrebbe dovuto essere un campo familiare: il linguaggio. Mentre è stato relativamente facile ottenere prestazioni del tutto proibitive per la larga maggioranza dei comuni mortali, come dimostrare teoremi matematici, il computer si è dimostrato particolarmente refrattario in compiti linguistici elementari, come rispondere a tono a una battuta. Va aggiunto che, se il linguaggio ha rappresentato le delusioni più cocenti, anche altre facoltà umane sono risultate ostiche per l'intelligenza artificiale. Ancora una volta paiono particolarmente difficili per la macchina proprio quelle prestazioni a cui nemmeno facciamo caso per la loro facilità: aspere cosa c'è davanti ai nostri occhi, afferrare con la mano un oggetto, capire se chi abbiamo di fronte è arrabbiato, e così via.

La sensazione è che compiti ovvi per un computer siano terribilmente difficial per una mente umana e viceversa, generando il sospetto che forse i due sistemi non abbiano poi una coslprofonda affinità di funzionamento. Ulteriori conferme provengono proprio da alcuni limitati successi dell'anima non cognitiva dell'intelligenza artificiale, quella orientata alle applicazioni pratiche, che mette oggi a disposizione software commerciali con alcune capacità linguistiche. Queste vengono ottenute dimenticando ogni similarità con i processi linguistiche del l'uomo, persino nell'analisi sintattica, in cui Chomsky sembrava un punto fermo [Tomita e Bunt 1995]. D'altra parte, se il computer è strutturalmente lontano dalla mente umana, è comprensibile che per dotarlo di capacità linguistiche non sia affatto utile replicare il genere di algoritmi con cui l'uomo effettua le analoghe prestazioni, bensi sviluppare qualcosa di adatto, appunto, al computer.

La conferma più netta è arrivata dai progressi effettuati nel frattempo dalle neuroscienze. Niente è appropriato per descrivere qualunque facoltà cognitiva del termine calcolo: è la funzione svolta dai neuroni nel cervello, ma il genere di calcolo è del tutto estraneo ai principi di funzionamento dei calcolatori digitali [Churchland e Sejnowski 1994]. In realtà ben pochi sostenitori del computazionalismo in scienze cognitive avevano ipotizzato un parallelismo strutturale tra i computer e il cervello, poiché l'idea era che ciò fosse irrilevante, come suggeriva un convincente esempio informatico: l'essenza di un modo di funzionare può essere interamente catturato dal software, indipendentemente dall'hardware, ovvero dalla circuiteria fisica con cui è costruito un determinato computer. Potranno eventualmente cambiare le prestazioni, in termini di velocità di esecuzione, ma il funzionamento sarà perfettamente riproducibile su hardware totalmente diversi.

Purtroppo invece è già questa stessa ripartizione tra software e hardware ad essere proprietà singolare dei computer digitali, e a cadere completamente passando ad altri sistemi di calcolo, quale il cervello. Ogni software nel suo funzionamento richiede l'immagazzinamento di informazioni temporanee in celle di memoria, processo che chiaramente non provoca nessuna modifica sull'hardware del computer. Nel cervello invece non c'è conservazione di informazioni che non debba transitare per modifiche organiche, che vanno dal potenziamento sinaptico alla crescita dell'assone o all'arborizzazione dei dendriti, come si vedrà in dettaglio nel § 2.

L'evidenza neuroscientifica, se da un lato ha tolto attrattiva al computazionalismo, tuttavia non ha messo fuori gioco il computer in sé, nel coadiuvare indagini cognitive. Si è detto come una conferma fondamentale sia la natura del calcolo che il cervello mette in atto a supporto di qualunque funzione cognitiva, linguaggio incluso, un calcolo che ben poco si presta ad essere descritto dalla matematica corrente, né a essere colto mediante misure empiriche. Le difficoltà principali sono nel suo elevato parallelismo e nella sua natura olistica: anche i processi più elementari sono il risultato dell'elaborazione di segnali da parte di milioni di neuroni, e non c'è un'organizzazione basata su moduli che funzionino isolatamente con pochi e chiari segnali con funzioni di ingresso e uscita, ma esiste al contrario un'interazione diffusa e reciproca tra aree cerebrali.

1.2. Il calcolare del cervello

Il neurocomputazionalismo è il tentativo di comprendere i calcoli neuronali che sottendono alle funzioni cognitive mediante studio di architetture matematiche in grado di descrivere il funzionamento di agglomerati di neuroni, e soprattutto mediante la loro simulazione tramite il computer. Il computer torna quindi a essere un potenziale strumento di indagine cognitiva, ma con un ruolo cambiato. Non lo è più in quanto in se stesso familiare con il funzionamento della mente, ma semplicemente perché capace di simulare fenomeni del tutto estranei. Così come, per esempio, è possibile e utile simulare un terremoto, pur non essendoci proprio nulla di affine tra il computer e le zolle tettoniche.

I tentativi di ricostruire per mezzo di un software il funzionamento dei neuroni risalgono in effetti proprio ai primi periodi dell'intelligenza artificiale. Alan Tu-

ring in persona, l'ideatore del computer programmabile oggi noto a tutti, aveva ipotizzato un'altra macchina ispirata all'architettura delle reti neuronali, in un articolo rimasto all'epoca totalmente ignorato [Turing 1948]. Marvin Minsky, uno dei padri storici dell'intelligenza artificiale, aveva tentato come tesi di dottorato la progettazione di un computer ipoteticamente simile a 40 neuroni [Minsky 1954]. Si trattò comunque di un breve periodo: ben presto diventò invece dominante l'approccio algoritmico su cui si innestò il computazionalismo, lo stesso Minsky trovò motivazioni teoriche per dichiarare fallimentari le speranze di mimare i neuroni [Minsky e Papert 1969], un altro influente personaggio dell'intelligenza artificiale come Herbert Simon calcò la mano parlando dell'esperienza sulle reti neuronali in termini di Birth and Death of a Myth [Simon 1986].

L'effetto fu inevitabilmente l'abbandono della strada neuronale per decenni, nonostante i continui paralleli progressi delle neuroscienze, f'ino a periodi molto più recenti, quando un gruppo della University of California di San Diego, con David Rumelhart e lames McClelland principali esponenti, escogitò un semplice ma astuto stratagemma matematico che abbatté tutte le limitazioni delle reti artificiali [Rumelhart e McClelland 1986b]. Da allora si è assistito a una esplosione di questo settore di ricerca, che ha finito per diventare predominante all'interno della stessa intelligenza artificiale, e la più allettante proposta per lo studio computazionale dei processi cognitivi. Lo stratagemma che segnò la svolta è noto come backpropagation, e ancora adesso rimane uno dei meccanismi più utilizzati nelle reti artificiali.

2. QUANTO I NEURONIARTIFICIALIASSOMIGLIANO A OUELLI VERI

Com'è noto, ogni modello matematico è in qualche misura falso rispetto alla realtà che vuol modellare. Molto spesso la falsità consiste nel trascurare deliberatamente un gran numero di fenomeni, con la giustificazione che essi non sono così influenti sugli aspetti che si vuol indagare, mentre ciò che si è scelto di incorporare nel modello, ed è sufficientemente aderente alla realtà, dovrebbe costituirne la componente dominante.

Curiosamente il computazionalismo neuronaleè falso già nelle sue ipotesi iniziali. Una rete artificiale è infatti un sistema in grado di assumere qualunque funzione. grazie a un elevato numero di elementi tutti uguali ed estremamente semplici. Sul fatto che questi elementi siano «tutti uguali» si potrebbe anche passar sopra: anzi, se è vero che nel cervello si possono distinguere diverse decine di cellule neuronali [Contreras 2004], è tutto sommato sorprendente la similarità di funzionamento elettrochimico dei neuroni, addirittura attraverso l'intero spettro di specie animali. Ciò che è invece totalmente lontano dalla realtà è prendere i neuroni per elementi «estremamente semplici». Questa cellula è luogo di un insieme di processi molto complessi, di natura elettrica, chimica e genetica, che interagiscono strettamente, su scale temporali che vanno dai millisecondi ai

mesi. Molto poco di tutto ciò ha avuto finora una chiara spiegazione; uno dei maggiori successi è stata la modellazione della corrente elettrica lungo l'assone, il canale di uscita del neurone, a opera di due fisiologi inglesi, Alan Hodgkin e Andrew Huxley [1952]. Con opportune modifiche quel modello può essere esteso anche ai dendriti, i filamenti del neurone che captano i segnali di ingresso. anche se con accuratezza minore. Non esiste ancora un'analoga matematica per descrivere altri processi fondamentali, quali la trasmissione chimica attraverso le sinapsi, i punti di contatto tra assone di un neurone e dendriti dei successivi. Inoltre, è bene sottolinearlo, il modello di Hodgkin e Huxley ha applicazione in ambito fisiologico, ma non è mai stato adottato per reti artificiali, proprio per la sua enorme complicazione.

Infine il metro con cui un numero di elementi viene stimato «elevato» per gli artificialisti è molto lontano rispetto alla realtà. Nella maggior parte dei modelli di linguaggio che verranno illustrati nelle prossime sezioni, il numero di neuroni è di qualche decina. Reti neuronali artificiali più recenti e sofisticate possono arrivare a poche migliaia. Nel cervello non esiste funzione macroscopica, per quanto semplicissima, che non impieghi meno di diversi milioni di neuroni: il sistema visivo ne utilizza qualche miliardo [Van Essen e Anderson 1990], mentre è più difficile fare stime sul linguaggio, che coinvolge aree disparate del cervello, ma data la sua complessità l'ordine di grandezza non sarà tanto diverso.

Ciò che è vero è che nel cervello agglomerati neuronali sufficientemente numerosi sono «in grado di assumere qualunque funzione», linguaggio incluso, e ciò avviene grazie alla capacità di plasmare un potenziale di comportamenti verso funzioni importanti per l'organismo, in virtù delle segnalazioni dall'ambiente esterno. È ciò che viene denominato fisiologicamente come plasticità neuronale, o a livello cognitivo come apprendimento. L'inseme dei meccanismi che lo attuano è diversificato e complesso, e riguarda tante parti della struttura neuronale: la crescita o atrofizzazione delle sue terminazioni di ingresso e uscita. ovvero dendriti e assoni, la creazione o eliminazione di canali ionici, quei passaggi strategici che regolano l'attività elettrica dei neuroni, e diverse altre, fra le quali la variazione dell'efficenza sinaptica, ovvero la capacità del segnale che arriva al termine di un assone di stimolare più o meno il dendrite del neurone a contatto con esso. Ebbene, di tutta la gamma dei processi coinvolti nella plasticità, solo l'efficienza sinaptica è riprodotta dalle reti artificiali, potendola ridurre a un semplice numero, che indica la forza del legame tra due neuroni connessi tra loro. In questi numeri, spesso chiamati pesi, è condensata tutta la capacità di plasmarsi di una rete artificiale.

2.1. Il metodo back propagation

A questo punto probabilmente il lettore comincerà a stupirsi del successo delle reti artificiali, accennato nel § 1, visto che sono costituite da elementi di complessità irrisoria, in numero esiguo, e limitati nella loro possibilità di evolversi rispetto alla realtà biologica. La chiave è proprio in quello stratagemma matematico ivi citato. la backpropagation. Essa riesce a trascinare una rete artificiale, durante il suo apprendimento, a realizzare la funzione desiderata, assegnando alla fire il valore ideale a ciascun peso, in modo che i collegamenti tra i vari neuroni siano ottimali per svolgere quella funzione. Quindi anche se i neuroni sono pochi e semplici, e se non c'è nulla a regolare il loro funzionamento oltre ai pesi, numeri che esprimono il reciproco comunicare tra neuroni, dando con sofisticato equilibrismo valori azzeccati a tali numeri, il gioco è fatto. La sua abilità a fissare i valori più idonei ai pesi si estende a reti con architetture anche non semplicissime, permettendo quindi di andare oltre l'elementare struttura a due soli strati di neuroni, di ingresso e uscita, il cosiddetto percettrone, che era stata facile preda delle critiche di Minsky. Da ora la configurazione più comune sarà a tre strati: ingresso, uscita, e uno strato di neuroni interno (talvolta chiamato strato «nascosto») che aumenta notevolmente le capacità computazionali della rete, è il cosiddetto percettrone multistrato. La backpropagation se la può cavare in linea di principio con qualunque numero di strati interni di neuroni tra ingresso e uscita, ma è dimostrato matematicamente [Cybenko 1989] che uno è più che sufficiente per ogni esigenza, purtroppo al prezzo di introdurre un'ulteriore falsità rispetto a ciò che succede nel cervello. L'addestramento con il metodo backpropagation richiede una serie di coppie ingresso/uscita corrette rispetto alla funzione che la rete dovrebbe realizzare. Se per esempio si sviluppa una rete che riconosca il parlato, gli ingressi saranno sequenze di suoni, e le uscite la parola che corrisponde a quei suoni. Ciò che occorre per il metodo di apprendimento backpropagation è una nutrita serie di suoni, abbinata alla parola corrispondente corretta. Il procedimento prevede inizialmente di assegnare valori casuali a tutti i pesi, e naturalmente sottoponendo in ingresso alla rete una certa seguenza sonora, la parola selezionata in uscita sarà una a caso. ben diversa da quella giusta: essendo però questa conosciuta, è possibile quindi valutare di quanto la rete abbia sbagliato, confrontando la sua uscita con quella corretta. Variando i valori numerici dei pesi, varia di conseguenza l'errore, ed è possibile per ogni peso verificare quale variazione condurrebbe nella direzione di diminuire l'errore. Ecco la spiegazione del termine: «propagazione all'indietro»: ciò che viene in qualche senso propagato è l'errore, trasmesso all'indietro, ovvero verso tutti i pesi che caratterizzano le connessioni sinaptiche della rete. Al passaggio successivo si prende in considerazione un altro campione, nell'esempio fatto un'altra coppia suoni/parola, e si modificano i pesi in modo ora da ridurre l'errore su questa nuova parola, partendo non più dai pesi iniziali casuali, ma da quelli modificati nel passo precedente. E così via per tutti i campioni disponibili. Ad ogni passaggio i pesi non vengono modificati drasticamente per eliminare del tutto l'errore, ma solo di una piccola frazione, in modo che la rete non si adegui di volta in volta a un solo specifico esempio, ma apprenda complessivamente la relazione tra ingressi e uscita, in questo caso tra suoni e parole. Inoltre tutti i campioni vengono ripresentati molte volte, finché progressivamente gli errori diventino trascurabili

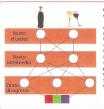
Non è una magia: non è affatto immediato condurre una rete artificiale ad apprendere la corretta mappatura tra ingressi e uscite, poiché il successo dipende da diversi parametri, come il numero di neuroni in gioco e la velocità dell'apprendimento, cioè la frazione che si stabilisce venga concessa come modifica dei pesi a ogni passo. In linea teorica però l'affermazione che queste reti, purché con almeno uno strato intermedio tra neuroni di ingresso e uscita, siano «in grado di assumere qualunque funzione» è veritiera, confermata da dimostrazioni matematiche [Hornik, Stinchcombe e White 1989]. Tale risultato è però raggiunto con un artifizio lontano dalla realtà biologica: ovviamente nel cervello non esiste proprio nulla in grado di mostrare, a una rete in fase plastica quale dovrebbe essere la sua uscita corretta.

2.2. Qualche similitudine

Se quindi si è chiarito come le reti, pur distanti dai loro omologhi biologici, funzionino, quello che ora risulterà fortemente compromesso è il loro ruolo cognitivo. Non sembra vi sia una grande differenza rispetto a un approccio computazionale classico, che prende per buona la spiegazione di un qualunque algoritmo in grado di realizzare la funzione in esame. In effetti finora si sono elencate solamente le differenze tra neuroni in versione artificiale e naturale, certamente non poche e pesanti, ma nulla si è detto ancora sulle loro similarità.

Tutte le reti artificiali colgono due aspetti centrali del comportamento computazionale biologico: uno riguarda l'operazione di accumulo che ogni neurone compie nei confronti di un certo numero di contributi, che afferiscono da altri neuroni ai suoi dendriti. l'altro riguarda la presenza di elementi non lineari nel calcolo complessivo. Entrambi sono punti piuttosto consolidati nel funzionamento cerebrale. Il primo va genericamente sotto il nome di graded potential, e il fenomeno che descrive è sostanzialmente l'accumulo «graduale» di potenziale elettrico nei dendriti. Se per esempio un neurone è connesso in ingresso, tramite i suoi dendriti, ad altri 100 neuroni, il suo stato di carica complessivo sarà l'integrazione degli impulsi elettrici inviati da quei neuroni, ciascuno soppesato a seconda dell'efficienza sinaptica della sua connessione. L'entità di carica accumulata regola l'emissione di segnali elettrici in uscita del neurone, ma in un modo non linearmente proporzionale. Si è arrivati così al secondo punto. Esisterà sempre una forma di saturazione, un limite massimo al segnale producibile dal neurone: una volta raggiunto, anche se l'accumulo in ingresso cresce, l'uscita non può più farlo. Questa forma di non linearità è intrinseca in qualunque sistema naturale, perché come tale ha sempre una limitazione di risorse. È evidente che il cervello, pur di fronte a stimolazioni di ingresso particolarmente sostenute, non potrà mai trasformarsi in una inesauribile centrale elettrica. Esiste anche una non linearità nella direzione opposta: sotto un certo valore di accumulo in ingresso il neurone non diminuisce più la sua attività e, non arrivando mai a interromperla del tutto, mantiene sempre quella che è chiamata emissione spontanea, sotto una certa soglia. Queste ultime considerazioni sulla non linearità, che potrebbero sembrare un dettaglio piuttosto banale, al contrario hanno rilevanza matematica notevole. Un sistema di elementi distribuiti acquisisce ricchezza nelle funzioni computazionali che è in grado di realizzare proprio in virtù delle non linearità. Se i neuroni si comportassero in modo lineare, verrebbe a cadere proprio l'emergere della complessità dal loro numero clevato. Prendendo per esempio il segnale emesso in uscita da un certo neurone, questo è il prodotto del segnale di altri neuroni a lul connessi, e così via in una lunga catera, che si può supporre di ripercorrere fino ad arrivare ad alcuni ingressi, per esempio di origine esnoriale. Ebbene, nel caso lineare, la trasformazione complessiva di quei segnali transitati per tantissimi neuroni arrivando infine a quello sotto esame, sarebbe matematicamente riproducibile da un solo neurone connesso agli stessi ingressi!

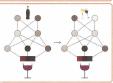
Accumulo e non linearità sono simulati in modo semplice nelle reti artificiali: in ogni neurone viene sommato il valore dei neuroni a lui connessi, moltiplicati per i pesì sinaptici. A questa somma è poi applicata una funzione non lineare, solitamente caratterizzata da una parte centrale lineare e da una saturazione ai suoi estremi, similmente a come si è visto avvenire nella realtà biologica. Similmente, anche se le premesse sulla grande complessità della cellula neuronale fanno intuire come questi pochi calcoli ne siano una semplificazione estrema. Per esempio qui si parla di numeri che vengono sommati, nel cervello l'attività del neurone non è un valore numerico, ma l'emissione di treni di impulsi elettrici nel tempo. La maggior parte delle reti artificiali trasforma sistemi matematicamente dinamici in statici, in cui, appunto, l'attivazione del neurone si può sintetizzare con un numero.

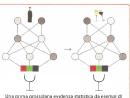

2.3. Le diverse anime del calcolo neuronale

Volendo entrare maggiormente nel merito del valore attribuibile a un modello di rete artificiale come metodo di indagine cognitiva, occorre cominciare a operare alcune distinzioni. Le reti neuronali non sono tutte uguali, come finora sottinteso. Il riferimento esplicito è stato alla tecnica di backpropagation che ha segnato la fortuna delle reti neuronali, ed è il metodo di apprendimento tuttora più praticato. Esistono tuttavia diverse alternative che, anche come risposta all'implausibilità di quel tipo di apprendimento, hanno cercato sistemi più vicini al la plasticità biologica, dove non sia necessario far ricorso a una serie di campioni di cui sia nota l'uscita: per questo motivo essi vanno sotto il nome di metodi di addestramento non supervisionati. La fonte di ispirazione è un principio molto generale relativo alle plasticità del cervello, enunciato da Donald Hebb diversi anni prima dell'emergere delle neuroscienze sperimentali. In via del tutto intuitiva considerò che la modifica sinaptica dovesse avvenire quando i due neuroni in comunicazione si trovano ad attivarsi entrambi, in sincronia temporale, per ripetute volte [Hebb 1949]. Queste coincidenze sono significative di qualche correlazione causale tra i segnali che contribuiscono a eccitare i due neuroni, ed è proprio tale nesso causale a venir codificato nella modifica sinaptica. Decenni dopo il fenomeno ha trovato conferme fisiologiche, in quello che viene chiamato LTP, Long Term Potentiation [Kandel, Schwartz e Jessel 1991].

Nonostante la sua ragionevolezza e i suoi riscontri empirici, la legge di Hebb ha avuto qualche difficoltà a essere adottata nei modelli artificiali, per precise ragioni teoriche. Si tratta infatti di un fenomeno a carattere squisitamente locale: una sinapsi si rafforzerebbe o modificherebbe solamente in base a ciò che succede tra due neuroni adiacenti, indipendentemente dal quel che stanno facendo tutti i neuroni circostanti. Ciò è difficile da conciliare con il fatto, sopra menzionato. che qualunque funzione organica è il frutto della cooperazione di milioni di neuroni, aspetto che invece è in un certo senso colto dalla backpropagation. quando corregge tutti i collegamenti sinaptici in base al confronto tra il risultato complessivo della rete e il risultato esatto. Una risposta è venuta da un ambito fisico-matematico dedicato ai processi battezzati auto-organizzanti, nei quali si verifica l'emergere di fenomeni coerenti in sistemi dotati di un elevato numero di elementi, che interagiscono tra di loro solamente in base a meccanismi locali. Esempi sono l'organizzarsi delle molecole nei cristalli, o nei moti convettivi dei temporali [Haken 1978; Ball 1999]. Fu Christoph von der Malsburg il primo ad importare i principi matematici dell'auto-organizzazione ai neuroni, accogliendo la legge di Hebb in quest'ottica [Malsburg 1973; Willshawe Malsburg 1976], Le sue formulazioni furono in grado di simulare processi complessi nei sistemi visivi dei mammiferi [Malsburg 1995], ma non ebbero certo risonanza e diffusione per costruire modelli di reti artificiali. Al contrario delle semplicissime reti di Rumelhart, i suoi sistemi di equazioni differenziali erano materia per addetti ai lavori, impraticabili da chi non fosse matematico.

La popolarizzazione di modelli auto-organizzanti, esenti dal discutibile sotterfugio dell'apprendimento supervisionato, avvenne diversi anni dopo, a opera di Teuvo Kohonen, che propose qualcosa di apparentemente diverso dalla legge di Hebb, ma che dimostrò essere matematicamente equivalente [Kohonen 1990]. Nelle sue reti, note con l'acronimo Som (Self-Organizing features Mat), lo stesso ingresso viene presentato contemporaneamente a tutti i neuroni, e viene preso in considerazione solamente quello che si attiva maggiormente per tale campione. Durante l'apprendimento, questo neurone, chiamato il «vincitore», modifica i suoi collegamenti sinaptici in modo da essere ancor più consono ad attivarsi con quei segnali. Lo stesso genere di modifica è esteso ad un gruppo di neuroni circostanti il vincitore, ma in misura ridotta. Se si considera quindi un neurone della SOM durante l'addestramento, ogni volta che un campione di ingresso avrà come vincitore un suo vicino, verrà attratto a essere più sensibile verso quello. Ouesta rete, evitando quindi l'addestramento supervisionato non richiede la conoscenza di nessuna uscita esatta per ogni campione di ingresso. Ancor di più. evita del tutto il concetto che debba esistere una «uscita» della rete, concetto del tutto abituale nei software ma ben poco consono al cervello. Il risultato dell'apprendimento da parte di una SOM è racchiuso nell'ordinamento topologico che vengono ad assumere i neuroni, ed è per questo che tali reti sono denominate mappe. La topologia rispecchierà le relazioni tra i dati di ingresso, rappresentati in una mappa a due dimensioni. In altre parole, quando sollecitando una mappa

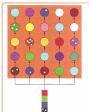

Reti multistrato



Comesempio si è presa una rete che sia in grado didistinguere si en un bichiere ci si si vino occa cola, dal solo colore. Il compito di una rete definice già la configurazione degli stati di resuroni in ingresso e in sucita. Dovendode otte que la colore di colore di

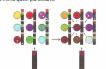

Durante l'apprendimento verranno presentati alla rete campio nidi liquido, le attivazioni dei neuroni sono mostrate in scala di grigi. Inizialmente i parametri della rete sono casuali, ed è quindi inevitabile che il primo esempio, vino rosso (sinistra), venga frainteso per coca cola

Qui interviene la backpropagation, che corregge i pesisinaptici nella direzione di mitigare l'errore, il possibile risultato è visibile a destra.



on a prima grossional e violenta satestica de a sestifui di vinorosso, potrebbeessere checolorescuro denotivino, ma esiste il vino blanco, che induce in errore la rete, a sinistra, e nuovamente l'effetto della backpropagation modifica i pesi sinaptici nella direzione giusta (destra), Al termine dell'apprendimento i pesi della rete saranno tali da fornireuna predizione corretta sia per vini rossi che bianchi, e perché no, rosati, distinguendo le particolaricomponenti di colore che sono inveceproprie della coca cola,

Mappe auto-organizzanti



Inquestereti i neuronisono organizzali in una mappa, nonci sono neuroni specifici diling reso, Luttilicevono lo stesso seguale, e sono pertantodotati di tanti pesi sinaptici quante sono ledimensioni dell'ingresso. In questocaso, sempre dedicato alle bevande, sono quattro tre componenti rosso, vedere e bila peri i colto quattro tre componenti rosso, vedere e bila peri i colto quattro tre componenti rosso, vedere come indicatore dell'efferevecenta. Nonc è nemmeno più un'uscital, I compito non e discriminare tipi di bevande, ma fornire una rappresentazionesotto forma di mappa. I colori dei neuroni, e le bollicine indicano i valori dei pesi sinaptici, inizialimente casuali, evite modificato e indicano i vivolti dei pesi sinaptici, inizialimente casuali, evite noismo dei revisibato corretto. Roso ovven non este noismo dei revisibato corretto.

Il funzionamento delle mappe è di tipo competitivo, presentando un dato alla rete, nel nostro caso un bicchiere di rosso, si individua il neurorie più attivo, quello i cui pesi sinaptici assomigliano di più alle componenti dell'ingresso.

L'apprendimento consiste del presentare in ingresso gli esempi di dati disponibili, ciò che succede è che in un intorno del neuronevincitorevengono modificati i pesi sinaptici, in mododa assomigliare di più al dato di ingresso. Qui è mostrato uno zoom sui dintorni del neuronevincitore. Vengono modificati maggiormente i neuroni vicini, e via via meno quelli biù distanti.

Nelcorsodell'apprendimento i neuron; venendo attatti di volta in volta dai diversi vincitori, assumono progressivamente pesi sinaptici tali per cui si instaura un ordinamento nella mapparispetto alle principali relazioni che sussistono nei datti. Il risultato, nel questioni figua advoce consisteda sinistra versodestra, e secondo il livello di efferenzenza dal bassoversoriato, dove si possonoleggerecategoriedi bevande, come quelle sovrapposte nella mappa.

addestrata con due ingressi diversi succede che si attivano due neuroni vicini, vorrà dire che esiste una forte relazione tra quelle due informazioni. Spesso è possibile vedere la mappa come una superficie composta da aree in cui sono collocabili categorie concertuali dell'insigne di dati di inpresso.

Così come le SOM superano la critica di non plausibilità dell'apprendimento supervisionato, esistono oggi reti artificiali che cercano di ripristinare anche la natura dinamica dei fenomeni neuronali biologici, esclusi dalla semplificazione statica, spiegata precedentemente. Sono chiamate opportunamente spiking networks, perché simulano quella sorta di scintilla, di breve impulso elettrico viaggiantelungo l'assone, tipico dei neuroni attivi. La loro matematica si complica comprensibilmente rispetto alle reti artificiali statiche, proprio perché c'è da prendere in considerazione il tempo. Vige sempre la regola dell'accumulo aritmetico: in ogni neurone si sommano i segnali che pervengono dagli altri neuroni collegati ad esso, modulati dalla forza delle connessioni sinaptiche. Però adesso i segnali arivano in momenti diversi, e quindi continuano ad accumulatis ria el tempo. Nel momento in cui raggiungono una certa soglia, si produce la scintilla artificiale, e viene azzerato per un certo tempo l'accumulo in ingresso, similmente a quel che succede nei neuroni veri.

In definitiva oggi c'è una gamma ampia di approcci all'interno del calcolo neuronale, che spaziano dal dettaglio elettrochimico del neurone, con il modello di Hodgin-Huxley, ad altri puramente astratti composti da pochi neuroni. La misura in cui un modello è più o meno attento ad aderire all'insieme di comportamenti noti dei neuroni biologici, ha condotto a una macroscopica suddivisione tra due aree di ricerca, il connessionismo [Feldman e Ballard 1982], contrapposto alla neuroscienza computazionale propriamente detta [Churchland e Sejnowski 1994]

Finora la quasi totalità dei modelli rilevanti proposti per il linguaggio cadono nella categoria connessionista, a differenza per esempio della visione, dove da diverso tempo i modelli tendono ad essere neurocomputazionali in senso stretto (Rolls e Deco 2002). Ci sono buoni motivi, la conoscenza del percorso elaborativo del linguaggio nel cervello è notevolmente carente, rispetto al dettaglio sul sistema visivo [Wandell, Brewer e Dougher 2005], che si è avvantaggiato non poco dalla natura spaziale delle immagini, che ne consente la tracciatura lungo buona parte del sistema corticale. Per il linguaggio invece esiste una impronta spazialmente riconoscibile solo nella primissima fase elaborativa, nella corteccia uditiva, tutto il seguito non ha più alcuna strutturazione ovvia, e risulta quindi particolarmente elusivo all'indagine.

3. L'APPRENDIMENTO DEL LINGUAGGIO

Comune a tutti i tentativi artificiali di imitare i neuroni, sia nella forma più metaforica del connessionismo sia in quelle più realistiche, è la caratteristica di essere inizialmente dei sistemi computazionali amorfi, indifferenziati, ma in

grado di assumere le più svariate funzioni, a seguito dell'esposizione a opportune serie di dati presentati come ingresso. Questa proprietà anzitutto li differenzia dalla forma algoritmica tipica del computazionalismo classico, dove la funzione cognitiva da simulare è già stata progettata preventivamente nella sua forma matematica, ed è espressamente esplicitata nel software. Inoltre, li accomuna a quanto succede effettivamente nel cervello, dove le capacità cognitive si sviluppano in agglomerati neuronali inizialmente indifferenziati, soprattutto nel periodo dalla nascita fino all'età matura.

È perciò evidente come i modelli neuronali siano stati immediatamente uno strumento nelle mani dei ricercatori per indagare un aspetto ben preciso del linguaggio: il suo apprendimento. È un argomento che, come già visto, ha un dibattito teorico importante, e riguarda praticamente ogni aspetto del linguaggio, a partire dalla sua stessa essenza. Qui si sono aperte probabilmente le divergenze più ampie tra l'approccio neurocomputazionale e le altre tendenze nelle scienze cognitive del linguaggio, nelle quali risultava dominante l'idea del linguaggio come una facoltà innata, disponibile grazie a uno specifico dispositivo cerebrale [Chomsky 1986; Pinker 1994; Hauser, Chomsky e Fitch 2002] (vedi cap. I, § 4.1.3; cap. II, §§ 2 e 3.1 e cap. III, § 2.5). La focalizzazione sull'apprendimento trova al contrario una sua forte motivazione proprio nel supporre che ben poco dei circuiti neuronali responsabili della matura capacità linguistica sia funzionante alla nascita, e che sia illuminante indagare come l'esposizione a un mondo sensoriale in cui è praticato il linguaggio costruisca gradualmente questa facoltà.

Il cambiamento di rotta suggerito dalla modellistica neuronale nello studio del linguaggio incontra una corrente tradizionalmente attiva all'interno delle scienze cognitive, quella della psicologia dello sviluppo, nella quale, insieme ad altre metodologie tipiche della psicologia empirica, era sempre la fase dell'acquisizione del linguaggio l'oggetto primario di studio. L'incontro è fruttifero, e negli anni Novanta i principali studiosi di psicologia dello sviluppo del linguaggio, come Annette Karmiloff-Smith, Elizabeth Bates, Linda Smith e Brian MacWhinney, adottano i modelli neuronali artificiali come una seria alternativa metodologica, soprattutto per la loro capacità di replicare forme di apprendimento naturale [Elman et al. 1996; Gasser e Smith 1998; MacWhinney 1999].

3.1. Bambini e modelli neuronali alle prese con la morfologia

Lo stesso gruppo della University of California di San Diego a cui si deve il successo delle reti neuronali (vedi supra, § 1,2) vedeva nell'esplorazione del linguaggio naturale una delle applicazioni fondamentali di ciò che andavano costruendo, grazie anche alla coincidenza nella stessa facoltà di specialisti della disciplina quali Elizabeth Bates e Jeffrey Elman. Fu lì che venne realizzato il primo modello sull'acquisizione di aspetti del linguaggio, prendendo in considerazione un tema particolarmente critico e denso di interrogativi: l'apprendimento della morfologia, e più precisamente, i problemi dei bambini inglesi alle prese con i verbi al passato [Rumelhart e McClelland 1986a].

La letteratura sullo sviluppo del linguaggio fornisce un quadro chiaro e ben confermato riguardo i tempi di questo apprendimento [Berko 1958; Kuczaj 1977]. Anche se notoriamente l'inglese è ben poco esigente nella sua morfologia, usando per la maggior parte dei verbi il semplice suffisso -ed per il passato, i pochissimi verbi irregolari sono proprio quelli inizialmente appresi dai bambini. I quali quindi, nelle loro prime esperienze del parlare al passato, impiegano le forme corrette di come, gone, got e così via. Man mano che il loro vocabolario si arricchisce, quella decina di verbi diventa minoritaria rispetto agli altri, il cui passato è invariabilmente in -ed. Si instaura a questo punto una fase in cui -ed è applicato sistematicamente ad ogni verbo al passato, inclusi quelli precedentemente usati in modo corretto, fenomeno denominato over-regularization. La fase finale è naturalmente quella in cui i bambini inglesi parlano al passato senza problemi. La spiegazione nella linguistica cognitiva classica [Berko 1958] è che inizialmente le forme passate dei verbi irregolari sono semplicemente «memorizzate», mentre successivamente a essere appresa non è la forma morfologica, ma la sua regola.

Rumelhart e McClelland dimostrano invece con il loro modello che un singolo processo è in grado di dar conto di entrambi i fenomeni. La loro rete era composta da due soli strati di neuroni, uno riproducente la forma fonetica della base di un verbo. l'altro la forma fonetica al passato. Codificare un suono in neuroni artificiali sarebbe tutt'altro che banale, farlo in modo non dissimile da ciò che avviene nella corteccia uditiva sarebbe stato oggetto di ricerca ben più ardua dello stesso problema dei verbi al passato, e sicuramente avrebbe comportato una complessità proibitiva per i computer dell'epoca. Ma l'approccio connessionista consente una maggiore disinvoltura, e i due studiosi escogitarono un metodo che, pur non avendo nessun riferimento ai sistemi di processo fonetici dell'uomo. rimane abbastanza rispettoso di certi aspetti comportamentali dell'esercizio fonetico, per esempio il fenomeno della coarticolazione, a tutto vantaggio della semplicità. Le parole erano rappresentate mediante attivazione o meno di caratteristiche chiamate wickel features in riferimento allo schema fonetico proposto in Wickelgren [1969], e le caratteristiche, 460 in tutto. coincidevano con i neuroni, sia nello strato della forma base sia in quella del passato. La rete era inizialmente addestrata con soli 10 verbi, quelli a cui per primi sono abituati i bambini, e poi arricchita con altri 410 verbi, rappresentativi statisticamente del vocabolario infantile. Ebbene l'addestramento della rete produceva comportamenti sorprendentemente comparabili con quelli dei bambini, caratterizzati da un momento centrale in cui le regolarità dei verbi con passato in -ed vengono estese a tappeto, e solo lentamente col tempo ritornano le forme corrette per i pochi irregolari.

La storia beninteso non finisce qui, anzi: la faccenda dei verbi al passato è curiosamente diventata oggetto di contresa tra computazionalisti classici e neuronali come finora mai altro aspetto del linguaggio. Le prime vigorose difese delle regole ebbero buon gioco prendendo di mira il punto debole del modello, le uickelf ea-

tures, ma anche sospettando che il risultato fosse ottenuto grazie al salto, poco realistico, tra l'apprendimento dei 10 verbi iniziali e i successivi 410 [Pinker e Prince 1988]. Un lato interessante di queste critiche è proprio la minuzia con cui furono analizzati metodo e risultati di Rumelhart e McClelland, segno che quindi l'approccio neuronale veniva ora preso sul serio, non semplicemente liquidato in linea di principio, come era stato fatto dagli esponenti più intransigenti del computazionalismo classico [Fodor e Pylyshyn 1988].

Quel modello, con tutte le sue limitazioni, non era che un pionieristico avvio. da allora il filone si è arricchito di proposte sempre più sofisticate. Brian MacWhinney introduce una trattazione più raffinata della fonologia, grazie anche ai progressi compiuti in quel periodo da questa disciplina, in un modello più articolato, un percettrone multistrato (vedi supra, § 2.1) dove oltre ai neuroni che codificano la parola, in ingresso ed uscita, vi sono due strati intermedi di 200 neuroni ciascuno [MacWhinney e Leinbach 1991]. La rete simula ora l'apprendimento delle quattro flessioni verbali inglesi; passato, participio passato e presente, e terza persona singolare presente, su un corpo di oltre 6,000 forme verbali di cui un centinaio irregolari. La simulazione ricostruisce il fenomeno della over-regularization. la coesistenza di forme errate e corrette in una certa fase, e l'uso corretto nella fase finale. La difesa delle regole non si arrende certo; viene osservato per esempio che alcuni risultati di questi modelli potrebbero essere legati alle peculiarità statistiche della lingua inglese, oppure che è artificioso esporre un sistema, che dovrebbe simulare il bambino, ai soli verbi [Prasda e Pinker 1993]. Ma il filone non si ferma, si studiano nuovi modelli, sempre più refrattari alle critiche, includendo una progressione nel numero dei verbi appresi simile a quella naturale [Plunkett e Marchman 1993] e l'apprendimento simultaneo delle forme verbali e del plurale di nomi inglesi [Plunkett e Juola 1999]. E c'è sensibilità anche alle difficoltà dei bambini non inglesi, per esempio sul bel rompicapo degli articoli tedeschi, soprattutto nel genere: non solo la presenza in tedesco anche del neutro, ma per le scelte tra maschile e femminile non molto intuitive, come già lamentava Mark Twain, trovando assurdo che in questa lingua il sole sia un oggetto femminile mentre la romantica luna maschile [Twain 1935]. MacWhinney ha realizzato un modello che in uscita riproduce le sei forme possibili per l'articolo, avendo come input la rappresentazione del nome che deve accompagnare, con qualche informazione aggiuntiva sul contesto in cui è presentato e sulla sua semantica, per esempio se il nome si riferisca a un essere umano, se sia una categoria superordinata, e così via [MacWhinnev et al. 1989]. L'idea dimostrata nella simulazione è ancora una volta che l'uso corretto del linguaggio non debba necessariamente sottintendere un sistema basato su regole, del genere di quelle che i bambini imparano con difficoltà molti anni dopo nelle scuole, ma può instaurarsi su architetture neuronali solamente sulla base dell'esposizione al linguaggio, in cui vengono catturate regolarità indicative sull'uso delle forme corrette [MacWhinney 1994].

3.2. Il significato delle parole

Se per un certo cognitivismo tradizionale l'essenza del linguaggio è l'insieme dei processi da cui derivano le sue forme, e quindi i primi modelli neuronali riguardanti la morfologia mirano al cuore di queste, si è visto come recentemente l'attenzione si sia progressivamente spostata verso il significato, in particolare il significato isciacale (dr. cas. J. 5. 4.1.3 c as. III. 58, 52.4 c 3.

Pertanto, anche all'interno della ricerca sull'apprendimento del linguaggio in cui si è incontrata la psicologia dello sviluppo con il computazionalismo neuronale. successivamente allo studio della morfologia si è costituito un importante filone dedicato all'acquisizione del significato lessicale. Comprensibilmente lo spettro di problematiche con cui si confronta la metodologia modellistica è ben più ampio, andando a toccare proprio il tasto più delicato dell'intera filosofia analitica. Anche volendosi appellare a un'autonomia riguardo l'esclusivo fenomeno dell'acquisizione del significato, non ci sono solo gli scetticismi dei cognitivisti chomskiani con cui fare i conti; non sono infatti mancate le autorevoli ingerenze della tradizione analitica, una per tutte il famoso paradosso di Ouine sulla possibilità proprio di apprendere il significato dall'esposizione al linguaggio. Il ben noto gavagai, suono ascoltato da un linguista alle prese con una lingua sconosciuta. e che immagina sia riferito a un coniglio, potrebbe essere in realtà una delle tante cose che le parole sono in grado di significare: una semplice espressione di meraviglia, oppure un'azione del roditore o una sua particolare colorazione, e così via [Quine 1960]. Oggi il paradosso continua a essere attraente per i logici. piace ai cognitivisti classici come conferma della necessità di postulare un organo linguistico innato, non disturba più di tanto i sonni agli studiosi dello sviluppo del linguaggio, un'ampia letteratura psicologica ne dà conto [Bates et al. 1979: Tomasello e Barton 1994; Tomasello 1995; Smith 1999]. Rimane purtuttavia una estremizzazione interessante di certi dilemmi che effettivamente si presentano a un bambino alle prese con le prime parole. Esiste poi tutta una serie di problemi aperti più specifici dell'apprendimento, ma non immuni da ripercussioni sulle teorie del linguaggio di più ampio respiro. Per esempio il divario tra un ritmo di apprendimento lento, intorno alle 2 parole a settimana, poco dopo un anno di vita, e quello ben più rapido che si instaura poco prima dei due anni, arrivando alle 10 parole a settimana, il cosiddetto vocabolary spurt [Dromi 1987]. Oppure, tra i due e i tre anni, la possibilità di acquisire un nuovo nome dopo averlo sentito solo poche volte, il fenomeno del fastmapping [Heibeck e Markman 1987]. Un genere di spiegazione classico di questi problemi è che siano evidenza dell'attivazione, durante lo sviluppo infantile, di un meccanismo speciale per l'apprendimento delle parole, compendio della predisposizione complessiva dell'uomo al linguaggio [Carev 1978]. Tale meccanismo prevede un preciso cambiamento cognitivo: l'adozione della parola come riferimento a cose, e l'assunzione che le cose debbano avere un nome [Dore et al. 1976; McShane 1979].

Tornando alle reti artificiali, la direzione in cui si sono mossi la maggior parte dei modelli sull'apprendimento del significato è ben diversa: mostrare come acquisire un linguaggio dall'esperienza sia del tutto praticabile, mettendo in campo il solo meccanismo della plasticità neuronale, ottenendo effetti compatibili con quei fenomeni riscontrati empiricamente.

Il primo di questi tentativi [Plunkett et al. 1992] utilizza un percettrone multistrato (vedi supra, § 2.1) in un modello essenziale dell'apprendimento dei nomi di oggetti visivi. Lo strato di ingresso è pertanto composto da due parti, una in cui i neuroni codificano il nome, e un'altra in cui è codificata la percezione visiva dell'oggetto. Lo strato di uscita è identico, costituito da neuroni dedicati a rappresentare il nome e altri per l'immagine. La funzione che si fa apprendere alla rete è piuttosto particolare: viene presentata una coppia immagine/nome, e l'uscita corretta è la stessa coppia. In realtà ciò che si vuol ottenere dalla rete è che nello strato intermedio si evolva una rappresentazione dell'interazione tra nomi e percezioni visive di oggetti: l'artificio di ottenerlo tramite un'uscita che tenta di replicare lo stesso ingresso è detto auto-associazione. L'addestramento procede poi con l'abituale tecnica di backpropagation. Al termine, è possibile sperimentare il modello sottoponendo solamente l'immagine, e vedendo qual è il nome associato, oppure presentando un nome, che produrrà in uscita anche un'immagine.

Questo esperimento è interessante soprattutto perché si cimenta con un altro problema teorico non da poco del significato, all'epoca circolante nell'intelligenza artificiale sotto il nome di symbol grouding [Harnad 1990], inquadrato nella filosofia attuale come componente referenziale del significato [Marconi 1997], in sostanza quale sia il legame tra un nome e l'insieme delle configurazioni percettive del suo referente, soprattutto di tipo visivo: per esempio tra la parola cane e le immagini di cani. È in questo senso è stato anche interessante il risultato, che nell'emergere dei legami nomi/immagini ha mostrato caratteristiche prototipali. Presentando cioè in ingresso le diverse varianti di una stessa classe di oggetti, tendenzialmente in uscita non si ottiene la medesima copia, bensì sempre uno stesso oggetto di quella classe, quello quindi prototipale. Occorre subito mitigare gli entusiasmi dicendo che parole come «immagine» e «percezione visiva» vanno prese molto metaforicamente in questo modello. Venivano usate 32 classi di oggetti, in realtà semplicissimi pattern di pixel bianchi/neri, senza nessuna attinenza con oggetti reali. Varianti nella stessa classe erano provocate con piccole modifiche casuali ai valori di qualche pixel. In pieno spirito connessionistico, nessuna pretesa di imitare nemmeno alla lontana una parvenza di sistema visivo, ma solamente di provare nella sua essenza il meccanismo di apprendimento per nomi di oggetti. Sperimentato nel corso dell'addestramento. mostrava certi comportamenti similari a quelli riscontrati nei bambini, a partire dal vocabolary spurt detto sopra, e anche altri più sottili, per esempio l'esistenza di fasi di errori in sovrageneralizzazione o sottogeneralizzazione. La prima è la tendenza dei bambini ad estendere un nome ad oggetti simili, come chiamare «auto» anche camion e furgoni, la seconda è l'opposto, per esempio considerare «mela» solo quella con la buccia rossa. Forse il merito maggiore di Plunkett e coautori, analogamente a Rumelhart e McClelland per la morfologia, è stato di aprire un campo di ricerca; da allora si sono susseguite proposte di diverse reti per simulare l'acquisizione del significato lessicale, più articolate, attente ad un maggior numero di problematiche.

Un filone radicalmente diverso fa uso dell'altra categoria di reti artificiali illustrata in precedenza (§ 2.3). L'idea di applicare i principi dell'auto-organizzazione alla semantica lessicale ha paternità illustri [Ritter e Kohonen 1989]. Tuttavia quell'esperimento iniziale non intendeva simulare l'acquisizione del linguaggio, ma in modo astratto mostrare come senza ausilio di addestramento supervisionato fosse possibile la formazione di mappe semantiche, ovvero superfici neuronali in cui la topologia rispettava relazioni semantiche tra le parole che attivano i diversi neuroni. Naturalmente questo era ottenuto codificando le parole non certo in base alla loro fonetica, che non avrebbe mai potuto veicolare informazioni semantiche, i vettori di ingresso erano invece il frutto di una codifica manuale di caratteristiche, nel caso di nomi di animali era stato definito un vettore di trenta componenti in cui entravano dimensione, presenza di pelo o piume, attitudine a cacciare, nuotare, e così via. Fu Risto Miikkulainen, un allievo di Kohonen, a incorporare nel concetto di mappa semantica codifiche della fonologia e dell'ortografia, e ad evitare il ricorso ad operazioni manuali nella rappresentazione delle caratteristiche semantiche [Miikkulainen 1997]. Il suo modello è la combinazione di tre tipi di mappe SOM, due dedicate a fonologia e ortografia, collegate ai rispettivi tipi di ingresso, e una semantica, che può ricevere ingressi parziali dalle prime due oppure direttamente con un suo vettore completo. La codifica semantica è realizzata in modo raffinato mediante un'altra rete, stavolta di tipo percettrone multistrato, nella configurazione denominata FGREP (Forming Global Representations with Extended backPropagation). Se ne parlerà estesamente più avanti (§ 4.3), si può anticipare che il suo principio è di estrarre automaticamente statistiche su quanto una certa parola si trovi ad occupare determinati casi grammaticali e in compagnia di quali altre parole. In questo esperimento la statistica veniva effettuata su un corpus di frasi semplici. in cui compaiano le parole sotto esame. In sostanza una semantica puramente inferenziale, derivata dal contesto d'uso delle parole. Oltre al normale processo di auto-organizzazione delle tre SOM, durante l'addestramento vengono simultaneamente modulati i collegamenti tra le tre mappe, usando la sola legge di Hebb: tra una mappa e un'altra si rafforza il solo collegamento tra neuroni contemporaneamente attivi nelle due.

Il suo modello non era però orientato allo studio dell'acquisizione del linguaggio, quanto ai suoi disturbi, era infatti in grado, inserendo disturbi nei segnali propagati da una mappa all'altra, di simulare comportamenti dislessici, e afasie specifiche per categoria. Tornando alla problematica dell'apprendimento del significato, sono Li et al. [2004] ad estendere il lavoro di Miikkulainen in questa direzione. Il suo modello ne eredita lo stesso schema, senza mappa ortografica, ma introduce opportuni accorgimenti per simulare l'apprendimento. Anzitutto è necessaria una codifica della semantica che sia incrementale: non è più possibile usare per ogni parola un vettore che sintetizza i nessi inferenziali con qualunque altra parola con cui capiti in una frase, occorre che la rappresentazione faccia solo uso delle parole già note alla rete/bambino. L'accortezza è di usare un numero di segnali di ingresso dimensionato secondo il vocabolario completo da sperimentare, ma usarne via via solo alcuni, mantenendo a 0 gli altri posti. e ricalcolando le codifiche a ogni incremento del vocabolario. Risolto questo problema, è emerso però che nella SOM l'aumento del vocabolario produceva instabilità nelle parole già apprese. Ancora una volta ciò è dovuto all'esigenza, nell'architettura SOM convenzionale, di fissare inizialmente il numero complessivo di neuroni, e poi lasciare che tutti possano modificarsi simultaneamente in base a ogni ingresso. Li e coautori hanno escogitato una variante, denominata GMAP (Growing Map), in cui il numero di neuroni attivi è variabile durante l'apprendimento, partendo da pochi, ed aumentandoli automaticamente via via che le dimensioni del vocabolario aumentano. Questo modello riesce a simulare non solo il vocabolary spurt, ma anche un fenomeno più sottile ad esso collegato: l'insorgere di errori più frequenti nelle parole precedentemente acquisite, in coincidenza con l'accelerazione del ritmo di apprendimento [Gerskoff-Stowe e Smith 19971.

Il ricorso ad un'architettura del tipo SOM ha una sua giustificazione teorica nell'apprendimento del linguaggio, basandosi su meccanismi non più riconducibili al puro associazionismo, bensì di tipo competitivo. Ciò sarebbe insito nel carattere di scelta lessicale delle prestazioni linguistiche. Quando, per esempio. il bambino percepisce una serie di caratteristiche riguardo un oggetto, alcune di queste potrebbero attivare diversi nomi, nel loro complesso alla fine però ne fanno emergere un solo nome, il più idoneo per quell'oggetto, a discapito di tutti gli altri scartati. Lo stesso vale per la scelta lessicale a seguito dell'esposizione a suoni, con proprietà fonetiche inizialmente compatibili con più di una parola. Nella SOM la competizione è un principio astratto, nello sviluppo infantile transita attraverso meccanismi cognitivi concreti, si considera per esempio importante nel guidare il legame tra nomi e significato l'attenzione selettiva. Il sistema attentivo consente una discriminazione preliminare degli elementi del mondo esterno, rilevanti come riferimento di un nome appena ascoltato [Smith et al. 2002]. Esiste una famiglia di modelli neuronali orientati espressamente a captare fenomeni attentivi nella scelta competitiva lessicale [Merriman 1999], dove però, nell'intento di simulare questi precisi aspetti, si è sacrificato in completezza, per esempio non vi è nessun trattamento della fonologia.

Terry Regier, allievo di Lakoff, ha ritenuto che un unico meccanismo di apprendimento, puramente associativo, possa dar conto dell'intera gamma dei principali fenomeni noti in psicologia dello sviluppo del linguaggio, inclusi il vocabolary spurt e il fast mapping descritti più sopra, e non solo [Regier 2005]. Fra altri quello noto come shape bias, che riguarda la difficile fase in cui il bambino generalizza un nome, accetta che sia applicato a più di un oggetto. Ciò pare avvenga più facilmente secondo certi assi di invariabilità degli oggetti, come la forma, è cioè più facile per il bambino accettare che due oggetti di stessa forma ma diverso colore si chiamino allo stesso modo, piuttosto che viceversa [Landau, Smith e Jones 1988], Il suo modello torna quindi ad assomigliare al percettrone multistrato, ma con degli adattamenti del tutto peculiari. Regier eredita da Plunkett la bipartizione tra rappresentazione fonetica e semantica, ma realizzando il loro intreccio in modo diverso. È come se vi fossero due percettroni separati, in cui lo strato di ingresso è o la codifica fonetica o quella semantica, e due strati intermedi. La particolarità è che poi lo strato di uscita dell'uno coincide con lo strato intermedio dell'altro. Inoltre negli strati intermedi i neuroni assumono significato preciso: sono codifiche prototipali, o di forme fonetiche o di caratteristiche dei riferimenti delle parole.

Nel processo di apprendimento il numero di neuroniviene aumentato man mano che si allarga la base di prototipi. Prendendo come esempio le forme fonetiche. quando viene presentata in ingresso una parola, ogni neurone nello strato intermedio, che è un associato ad un prototipo, si attiva in base alla differenza tra la forma fonetica di quel prototipo e la parola data. I neuroni attivati a loro volta modulano, mediante i proprio collegamenti sinaptici, i neuroni dall'altra parte, quelli del significato, che sono pure prototipi, e quello più attivo viene considerato il riferimento della parola. Se però succede che la nuova parola attiva in modo debole lo strato intermedio, vuol dire che non c'è nessuna forma fonetica prototipale che le assomiglia: la parola viene percepita come nuova, e quindi si aggiunge un neurone allo strato intermedio. Esattamente lo stesso procedimento avviene per i referenti. Per il resto l'apprendimento segue lo schema della backpropagation, presentando coppie di parole e riferimenti, in cui quindi per la parte fonetica l'errore è nella differenza tra il riferimento scelto dalla rete e quello noto. Allo stesso modo, dal lato dei significati l'errore è tra la parola (nella sua forma fonetica) prescelta dalla rete e quella corretta.

Nelle simulazioni la rete di Regiet ha dimostrato proprietà ampiamente compatibili con i diversi fenomeni che si prefiggeva di riprodurre, in particolare il fast-mapping in una fase di apprendimento matura del linguaggio, proprietà poco consona alle reti multistrato che richiedono sempre molti passi di presentazione di un esempio, prima che venga recepito. Questo modello pare in grado di apprendere decentemente una parola anche con una sola esposizione, e conservare tale capacità a lungo, nonostante successive sollecitazioni con parole diverse. Ha dimostrato qualcosa di analogo alshape bias, che cioè sequenze di apprendimenti di associazioni parole-significatoinducevano una facilità all'estensione dei prototipi lungo quella dimensione di caratteristiche dei riferimenti che era invariante.

4 NON REGOLE MA REGOLARITÀ

Se la capacità di apprendere è uno dei punti di forza del neurocomputazionalismo, fecondo, come visto, per esplorare lo sviluppo del linguaggio, e ben difficilmente imitabile con i metodi algoritmici tipici del computazionalismo classico, questi ha dalla sua un'altra prerogativa che pare sfuggire al calcolo neuronale. È la sintassi, Questos aspetto del linguaggio, mentre pare in perfetta simbiosi con il computazionalismo, in virtù dello stretto connubio tra grammatiche chomskiane e principi di funzionamento del computer (come visto supra, 5 1), sembra i neommensurabile con il calcolo neuronale, ostico a regole deterministiche, algoritmi sequenziali, sistemi simbolici e combinatori. È proprio il concetto matematico di variabile, identificatrice di un contenuto e correlato del simbolo, così immediatamente disponibile in informatica, a non esistere nei sistemi di calcolo realizzati dalla natura, basati sui neuroni [Squire 1987]. Naturalmente le reti neuronali artificiali sono implementate usando variabili e algoritmi sequenziali, non potrebbe essere diversamente visto che sono programmi eseguiti su ordinari calcolatori, ma ciò che attuano quei programmi è la simulazione, più o meno fedele, di altri sistemi in cui non esistono né variabili né strutture algoritmiche.

La profonda differenza strutturale tra la sintassi, così com'è organizzata negli studi linguistici, ed in particolare nelle sue formalizzazioni da Chomsky in poi, e la struttura computazionale del cervello, dovrebbe far pensare. Una riflessione a cui potrebbe indurre è che apparati come quello delle grammatiche generative e trasformazionali siano ingegnose ed eleganti costruzioni, abili ad incastrare in una complessa organizzazione molti fenomeni linguistici. ma del tutto arbitrarie ed incorrelate con le modalità mentali di processo del linguaggio. Al contrario i difensori del computazionalismo classico utilizzarono proprio questa incompatibilità per l'operazione opposta: decretare l'impossibilità di principio delle reti neuronali artificiali di spiegare la sintassi, e quindi il linguaggio, e conseguentemente di essere inadeguate per lo studio della cognizione umana [Fodor e Pylyshyn 1988]. Era una presa di posizione più che comprensibile, dato che in quel periodo, pur circolando già diversi esempi di reti neuronali orientate allo studio cognitivo del linguaggio (di cui alcune elencate supra, § 3.1), non vi era nessun tentativo di andare oltre alla parola singola, e non apparivano all'orizzonte indizi di come il processamento di entità come le frasi avrebbe potuto trovare accoglienza in un'architettura neuronale artificiale. C'era purtuttavia la consapevolezza che altre architetture. quelle con i neuroni veri, avessero risolto egregiamente il problema, e quindi qualche strada doveva esistere.

4.1. La grammatica dei neuroni ricorsivi

Un'elegante soluzione fu trovata nel 1990 da Jeffrey Elman, pubblicata in un lavoro rimasto famoso, dal titolo Finding Structure in Time: infatti la sua intuizione fu proprio quella di dotare le reti neuronali, ai fini di metterle in grado di recepire una sintassi, di una capacità di rappresentare fatti che si evolvono nel tempo [Elman 1990]. Anche se l'analisi sintattica tradizionale non espone esplicitamente una dipendenza dal tempo, dando l'idea che gli elementi della frase vengano catturati tutti in una volta, per esempio sotto forma di albero, è evidente che il riconoscimento del linguaggio da parte dell'uomo è un processo sequenziale nel tempo, sotto forma sia di ascolto sia di lettura.

Una maniera immediata di rappresentare il tempo è mediante un suo sviluppo spaziale. Supponendo che il dato di interesse sia codificato con due segnali a due neuroni, è possibile rappresentare il suo andamento nel tempo, per esempio in 100 intervalli successivi, dotando la rete di 200 neuroni di ingresso, che a due a due neicevono i dati nei diversi intervalli temporali. Tale soluzione è effettivamente stata praticata in ambito di reti neuronali [Narendra e Parthasarathy 1990], per fini diversi da questo, ma risulta limitata, essendo necessario fissare una volta per tutti il numero di intervalli temporali presi in considerazione. È inoltre poco agile, aumentando notevolmente il numero di neuroni della rete, ed è soprattutto artificiosa: non c'è nulla che indichi alla rete, nell'esempio fatto, che i segnali a due a due siano cambioni nel tempo della tessea entità.

Elman ha invecepercorso la strada di una rappresentazione implicita del tempo. trasformando un convenzionale percettrone multistrato da statico in dinamico. La modifica consiste nell'avere qualche neurone che abbia come suoi ingressi, oltre a quelli provenienti da neuroni di uno strato inferiore come normale, anche uno da se stesso. È uno stratagemma tutt'altro che inusuale in matematica, noto col nome di ricorsione: le reti di Elman sono infatti spesso denominate reti ricorsive. Nel calcolare l'accumulo (vedi supra, § 2,2) di un neurone che funziona ricorsivamente, oltre a sommare il contributo degli altri neuroni collegati a lui, si aggiunge il valore che aveva lo stesso neurone, nell'istante temporale precedente. Ecco come viene quindi mantenuta una traccia del passato, e va notato come l'estensione all'indietro sia teoricamente illimitata, infatti tenendo conto del valore che aveva il neurone all'istante precedente, questo a sua volta è stato influenzato dal valore due istanti di tempo precedenti, e così via fino all'inizio della serie temporale. Il modo di addestrare la rete di Elman non differisce da quelli abituali, può essere applicata quindi la tecnica di back-propagation (vedi supra, § 2.1), occorre naturalmente disporre di campioni in serie temporali, che vanno presentati alla rete nell'ordine cronologico corretto.

È chiaro che la quantizzazione del tempo è puramente astratta, non c'è nessuna necessaria aderenza al tempo fisico, i diversi istanti corrispondono solamente a eventi in successione temporale, ed è un'astrazione perfettamente adeguata per esprimere la successione di parole negli enunciati del linguaggio. Nel primo esperimento Elman costruì 10.000 frasi basate su un lessico ridotto di 29 elementi e su una semplice grammatica generativa, del tipo woman eat sandwich o cat chase mouse. Si tratta di un linguaggio essenziale, in cui sono evitati gli articoli e le modifiche flessive. Il modo di funzionare è semplice: l'uscita della rete non è altro che la parola successiva all'ingresso corrente. Entrambi gli strati sono costituiti da tanti neuroni quante le parole. Nell'ingresso una parola è codificata in modo semplicissimo: tutti i neuroni sono mantenuti inattivi eccetto uno, ovviamente diverso da parola a parola. In questo modo c'è la massima garanzia di non avere similarità statistiche tra codici, per evitare che la rete abbia inizialmente riferimenti lessicali spuri. Analogamente nello strato di uscita verrà considerata come predetta la parola che corrisponde al neurone risultante più attivo degli altri. Lo strato intermedio comprendeva 150 neuroni, tutti collegati in modo ricorsivo. Non è rilevante l'errore assoluto nell'indovinare la parola successiva, come nei compiti di predizione del significato dalla forma o viceversa, visti precedentemente. È del tutto normale che all'inizio della frase ogni parola contenga ben poche indicazioni sulla successiva. L'aspetto notevole è l'organizzazione che assume lo spazio delle attivazioni nello strato intermedio.

Elman analizzò ciò che aveva appreso la rete misurando le similarità nei valori assunti dai neuroni dello stato intermedio alla presentazione delle 29 parole, mediando sull'intero corpus di 10.000 frasi. Il risultato furono sorprendenti raggruppamenti delle parole in categorie che tenevano in considerazione sia gli aspetti sintattici che quelli semantici. Anzitutto si era sviluppata una divisione macroscopica tra nomi e verbi, senza nessuna sovrapposizione. I verbi presentavano all'interno una dicotomia principale tra verbi sempre transitivi e una classe in cui figuravano verbi sempre intransitivi, nonché la distinzione dei verbi che occasionalmente sono transitivi come break e smash, questi ultimi vicini in una loro sottogerarchia. Tra i nomi era evidente una prima divisione tra oggetti animati e non, i primi ulteriormente separati tra umani e animali.

Mentre questo modello analizzava solamente frasi semplici, un suo successivo lavoro fece notevoli passi avanti, affrontando un linguaggio completo di regole flessive per singolare/plurale, e soprattutto comprendente costrutti subordinati. retti dal pronome who [Elman 1993].

Il principio continuava a d'essere la rete ricorsiva, ma in un'architettura modificata. Gli strati di ingresso e di uscita comprendono sempre tanti neuroni quante parole, 26 in questo caso, ma lo strato ricorsivo, composto da 70 neuroni, non è l'unico intermedio, ve ne sono altri due, ciascuno con 10 neuroni, che lo separano dall'ingresso e dall'uscita. Il compito di predizione è ora chiaramente complicato dal numero di dimensioni su cui può variare la parola seguente, anzitutto come elemento lessicale, categoria grammaticale, ma anche come concordanza in genere e numero, dipendente dal livello di subordinazione nella frase. L'esperimento mostra che la rete riusciva ad apprendere correttamente la grammatica. usando però una progressione opportuna durante l'addestramento. Ciò poteva essere ottenuto in due modi: nell'uso delle frasi campione, presentando per un certo periodo solo quelle semplici, poi via via più complesse, oppure limitando la memoria dei neuroni ricorsivi, assegnando inizialmente capacità di ricordare solo fino a tre parole precedenti, e incrementando via via che la rete imparava, fino a una memoria illimitata. Secondo Elman questi fatti sono rilevanti rispetto a ciò che succede ai bambini durante l'apprendimento della sintassi, facilitato proprio da una limitazione di risorse cognitive e di carico di informazioni, che rende per esempio molto più arduo l'apprendimento tardivo di una seconda lingua [Newport 1990]. È un punto controverso: successivi modelli neuronali, sempre basati su reti ricorsive [Rohde e Plaut 1999], hanno invece mostrato la possibilità di apprendere la grammatica pur con esposizione a frasi complesse fin dall'inizio, e senza dover limitare la memoria, con il solo accorgimento di costruire un corpus in cui siano permessi solamente costrutti semanticamente sensati, aumentando pertanto gli indizi disponibili alla rete nel predire la struttura della frase

Indipendentemente dal percorso seguito per il suo sviluppo, nella rete matura si assiste a una notevole accuratezza nel fare previsioni che apparentemente

dovrebbero diluirsi data la distanza tra parole che reggono le concordanze, per esempio nelle due frasi:

- boy who feeds dog who bites cat chases Mary
- 2. boys who feed dog who bites cat chase Mary

la predizione di chases anziché chase ha come unico indizio una parola, boy/boys, percepita 7 parole prima nella frase, mentre deve evitare di essere influenzata dalla flessione di, per esempio, bites, che è distante solamente due parole. Come possa avvenire tutto ciò è stato analizzato da Elman, scrutando le attivazioni dei neuroni nello stato intermedio. A differenza del primo esperimento però, ora fare la media per una parola su tutte le frasi avrebbe appiattito fondamentali differenze: la tecnica di analisi fu quindi completamente differente. Si studiarono le traiettorie delle attivazioni neuronali al susseguirsi delle parole in ogni specifica frase. Siccome non è umanamente possibile districarsi in 70 valori contemporaneamente, tanti sono i neuroni nello strato intermedio. Elman fece ricorso ad una tecnica matematica, l'analisi dei componenti principali [Jolliffe 1986], tramite cui è possibile approssimare un dato di dimensioni elevate, con un numero piccolo di dimensioni, che ne colgono le variazioni principali. Così usando solo le due componenti principali, è possibile seguire visivamente cosa fa la rete mentre analizza la frase. Ne vien fuori che frasi grammaticalmente equivalenti, anche se usano punti diversi, avendo parole differenti, risultano molto simili nel tipo di traiettoria tra una parola e l'altra. Quando ci sono frasi similari come costrutto grammaticale, ma con differenze di concordanza, come nelle due di sopra, succede qualcosa di interessante. La prima differenza, boy/boys, si riflette in due punti iniziali vicini ma non coincidenti, tale differenza è mantenuta lungo l'intera traiettoria, transitando quindi per i due distinti chases/chase, per converge esattamente solo nel punto corrispondente alla parola Mary.

4.2. Alcune conseguenze teoriche

Uno degli assunti di Chomsky era l'impossibilità di dedurre la struttura sintattica dall'ordine superficiale in cui si susseguono le parole in una frase [Chomsky 1957), che deriva da strutture più astratte, dominate da un insieme di regole deterministiche. Anche se nella realtà non è mai stato possibile esplicitare formalmente l'insieme di regole che sottendano davvero all'intero repertorio di forme sintattiche in una lingua, l'assunto ha avuto ampia accettazione per lungo tempo, avallando l'indicazione che cercare regole sempre più complesse e specifiche fosse l'unica strada corretta nello spiegare il linguaggio.

Ciò che suggeriscono invece gli esperimenti con le reti neuronali è che l'ordine delle parole sia sufficiente per riconoscerne i ruoli grammaticali. Il risultato è anche di buon senso considerando che, qualunque siano le possibili strutture astratte che soggiaciono alla sintassi, la forma superficiale è l'unica disponibile a chi ascolta o legge, e quindi deve esserci la possibilità di trarresolo da lì ogni indizio sufficiente per comprendere le frasi. La tradizione chomskiana, come si sa, sfuggiva quest'evidenza postulando qualche circuiteria cerebrale innata, che incorporasse proprio le regole della grammatica, pronta quindi ad attivarsi una volta acquisiti gli elementi del lessico.

Tale tradizione aveva trovato solidi appigli computazionali in una notevole dimostrazione sull'impossibilità di acquisire un linguaggio formale sufficientemente potente da soli esempi positivi [Gold 1967]. Le conseguenze di questo teorema erano estese dalla matematica all'uomo, in virtù di una certa evidenza dalla letteratura psicologica, della mancanza di esempi negativi di linguaggio per il bambino. Ovvero, i genitori e chi accudisce un bambino nell'età dell'apprendimento del linguaggio, raramente si mettono a produrre frasi sgrammaticate per mostrare i modi possibili in cui si sbaglia la sintassi. L'esposizione al linguaggio è quasi esclusivamente composta da esempi corretti [Baker 1979], e avendo Gold dimostrato che con questi non si va molto avanti, ecco il problema logico dell'acquisizione del linguaggio [Baker e McCarthy 1981), la cui unica soluzione sembra il presunto dispositivo grammaticale innato [Marcus 1993].

Questi passaggi sono in un certo senso esemplari del principale rischio a cui espone l'adozione del computazionalismo classiconellescienze cognitive: l'estendere ciò che si verifica nel mondo formale della matematica a ciò che dovrebbe verificarsi nel mondo reale del comportamento umano. Indubbiamente quel teorema è corretto, ma riguarda il mondo astratto dei linguaggi formali, delle grammatiche formali, che è stato certamente utile nello studio del linguaggio umano, ma che sarebbe grave errore voler identificare con il funzionamento del cervello alle prese con il linguaggio. In un provocatorio articolo di rassegna. The Dinosaurs and the Ring, MacWhinney paragonava l'insieme delle regole linguistiche ai dinosauri, destinate ad estinguersi dopo essere cresciute a dismisura. e l'approccio computazionale al potere dell'anello nei racconti di Tolkien, che consente modelli del linguaggio di ogni tipo, potere che se non controbilanciato da modestia e cautela (nell'estendere i risultati ...), conduce a risultati disastrosi [MacWhinney 1994].

È stato certamente un grande merito dei modelli neuronali artificiali aver mostrato come acquisire la sintassi sia perfettamente compatibile con esempi solo positivi, usando semplicemente dei principi di calcolo lontani dalle grammatiche formali, e sicuramente più prossimi ai calcolatori messi a disposizione dalla biologia. In questi sistemi non c'è nessuna esplicitazione di regole. In nessuna connessione sinaptica, o spazio di attivazione, è osservabile una rappresentazione correlabile univocamente ad alcuna delle regole formalizzate dai linguisti. Quello che viene incorporato nella rete è un insieme di regolarità, che emerge proprio dalla superficiale successione delle parole, associate ad un numero di indizi che si estende via via che la loro semantica viene catturata.

Sono risultati che vanno in accordo con tendenze recenti della sintassi cognitiva, i cui studi approfonditi sull'acquisizione dall'esperienza (esposti nel cap. III. § 4) portano ulteriori conferme.

Questi risultati hanno suggerito approfondimenti anche sul piano matematico, per capire quali siano le motivazioni per cui ciò che è dimostrato impossibile nel teorema di Gold è invece praticabile nella realtà. Uno degli elementi che pare s'uggisse a quella formalizzazione è l'aspetto stocastico del linguaggio, ovvero il miscuglio di casualità e prevedibilità nel succedersi delle parole nelle frasi grammaticalmente corrette, che non è distribuito uniformemente sul lessico, ma con caratteristiche statistiche di regolarità, che sono quelle su cui le reti neuronali artificiali, e probabilmente quelle biologiche, basano la loro abilità di acquisire una sintassi (Seidenberg e MacDonald 1999). Allen e Seidenberg 1999].

4.3. Verso altre grammatiche

Anche se ciò che emerge dalle reti neuronali ricorsive è un quadro radicalmente nuovo, gli esperimenti visti finora avevano come riferimento un concetto radizionalmente chomskiano di sintassi, il loro scopo era mostrare l'acquisizione da esempi di frammenti di una grammatica generativa standard. Un certo filone di studi ha ulteriormente avvicinato l'accostamento, insistendo nel mostrare l'adeguatezza computazionale delle reti ricorsive nell'incorporarevarie gerarchie formali di linguaggi [Siegelmann, Sontag e Giles 1992; Boden e Wiles 2002], indicandole quindi come alternativa modellistica in stretta analogia ai metodi computazionali della linguistica tradizionale.

Diversi indirizzi di ricerca puntano invece ad usare i modelli neuronali nell'esplorare concezioni alternative della grammatica, tipiche della sintassi cognitiva (vedi cap. III, § 4.2). L'assonanza tra computazionalismo neuronale e mondo della linguistica cognitiva è d'altronde evidente, lo stesso Lakoff fu tra i promotori di un ambizioso programma, diretto da Feldman presso l'università di Berkey, inizialmente noto come il «linguaggio L_0 », successivamente Neural Theory of Language, rivolto a modellare con strumenti neuronali vari aspetti dell'acquisizione del linguaggio [Feldman, Lakoff e Weber 1990].

Miikkulainen ha diretto la sua attenzione modellistica a quella che è nota come la grammatica deticati, un tentativo di analisi sintattica lontano dall'impostazione chomskiana, in cui il ruolo delle parole nella frascè dettato dalla simbiosi tra l'uso contingente, che è quello sintattico in senso stretto, e il loro valore semantico [Fillmore 1968; 1987; Cook 1989]. Tale scelta è stata alla base di un'ampia serie di sviluppi modellistici, in cui la grammatica è sia oggetto di simulazione, ma anche tappa intermedia per una esplorazione computazionale di vari aspetti del inguaggio [Miikkulainen 1993; 1999]. In un primo esperimento sono presi in considerazione verbi di azione che comprendono al più 4 casi: agente, paziente, strumento e modificatore del paziente. La rete è una architettura ricorsiva, la cui particolarità principale è lo strato di uscita, dove i neuroni sono raggruppati in compartimenti, ciascuno con un numero di neuroni pari alla codifica del lessico, destinanti a rappresentare i casi grammaticali. Nel caso specifico l'uscita comprendeva cinque raggruppamenti: i quattro casi elencati sopra e l'azione.

L'ingresso è come sempre una singola parola, presa seguenzialmente dalla frase in esame, lo strato intermedio, completamente ricorsivo, consente la memoria delle parole già incontrate nella frase.

Di particolare interesse è la soluzione originale per l'annoso problema della codifica in segnali neuronali delle parole, che (come visto supra, §§ 3.1 e 3.2) non aveva trovato soluzioni convincenti. Per la preoccupazione di non incorporare nelle codifiche informazioni che deformassero arbitrariamente i risultati, si optava per codifiche assolutamente asettiche, come nel modello di Elman, ma ben difficilmente è ciò che succede nel cervello umano. Miikkulainen. con un procedimento battezzato FGREP (Forming Global Representations with Extended backPropagation) [Miikkulainen e Dyer 1991], modella la codifica appropriata ad ogni parola, man mano che vengono presentate le frasi. In sostanza inizialmente ogni parola ha una codifica diversa, formata in modo casuale, come negli altri modelli. Però tale sequenza di valori iniziali è modificata, usando esattamente il principio della backpropagation, sono cioè cambiati nel verso che rende minore l'errore commesso in quel momento nel predire la frase. Ripetendo il procedimento per tutte le frasi, ogni parola incorpora nella codifica ciò che la rende mediamente affine sia al ruolo grammaticale che più abitualmente ricopre, sia alle altre parole del lessico con cui si trova a convivere nelle frasi, in una sorta si semantica inferenziale.

La rete, con le parole opportunamente codificate, risulta in grado di apprendere i possibili ruoli svolti dalle parole di un lessico che, per quanto limitato, è già soggetto alle difficoltà interpretative caratteristiche del linguaggio. Per esempio. nelle due frasi:

- 1. the boy hit the window with the hammer
- 2. the ball hit the girl with the doe

per la rete è immediato assegnare a hammer il caso strumento, e tendere a collocare invece come modificatore del paziente dos, nonostante l'identico posizionamento contingente nella struttura delle frasi, grazie alla diversa semantica di hammer, indubbiamente strumento tipico per l'azione hit, a cui un cane si presta decisamente meno. È da notare anche l'attribuzione, nella seconda frase, del ruolo agente a ball pur non essendo oggetto animato. Ci sono casi in cui né le proprietà semantiche della parola né il contesto della frase possono disambiguare il ruolo grammaticale, per esempio in the boy hit the girl with the ball, la parola ball può equivalentemente essere l'oggetto che ha colpito la ragazza, oppure ciò con cui innocentemente giocava prima di essere colpita, con qualcos'altro, in queste circostanze la rete lascia vuoti (con valori a zero) i gruppi neuronali corrispondenti ai due casi grammaticali strumento e modificatore.

Disporre di una rete in grado di cogliere questo tipo di grammatica è trampolino di lancio verso abilità linguistiche più complesse, quali il trattamento corretto delle subordinate, su cui già si era visto cimentarsi Elman. Il modello di Miikkulainen, basato sempre su architetture ricorsive e sulla codifica FGREP, arriva a risultati particolarmente similari al comportamento umano. Il tipico limite di comprensione è al terzo livello di subordinazione, ma è fortemente dipendente dalla disponibilità di indizi semantici. Prendendo due frasi entrambe con tre livelli di subordinazione:

- the girl who the boy who the girl who lived next door blamed hit cried
- 2. the car that the man who the dog that had rabies bit drives is in the garage

è immediato constatare come la prima appaia totalmente oscura, mentre la seconda, pur con qualche difficoltà, mostri un significato sensato, in virtù di certe proprietà semantiche forti, dei cani di mordere e delle persone di guidare macchine, e infine di quest'ultime di stare nei garage. Oltre a denotare questo divario di comprensione a seconda degli indizi semantici, il modello presentava debolezze strutturali, per esempio maggior facilità a confondere i ruoli nelle subordinate centrali piuttosto che in quelle di coda, che complessivamente aderiscono in pieno alle difficoltà umane [Miller e Isard 1964; Foss e Cairns 1970]. Inoltre, se perturbato artificialmente con aggiunta di rumore casuale, mostrava prestazioni degradate in cui il supporto semantico era sempre più essenziale, analogamente a ciò che è stato riscontrato in bambini [Huang 1983] e in soggetti afssic [Caramazza e Zuirf 1976].

Infine il modello è stato esteso allo studio della disambiguazione lessicale, la capacità di interpretare all'interno di frasi parole polisemiche [Miikkulainen e Mayberry 1999]. Esistono al proposito diverse teorie circolanti nella semantica cognitiva. Alcune posizioni considerano che il contesto limiti in partenza la gamma dei significati, rendendone accessibile solamente quello più plausibile [Glucksberg, Kreutz e Rho 1986]. Le teorie dell'accesso multiplo suggeriscono invece che diverse interpretazioni coesistano, finché non intervengano informazioni sufficienti alla scelta del significato corretto [Seidenberg et al. 1982]. Il modello di Miikkulainen ha mostrato come per un sistema neuronale questa netta dicotomia non si ponga, una parola polisemica durante l'ascolto di una frase può oscillare continuamente verso diversi poli di significato, sia in funzione delle parole che l'hanno preceduta che delle seguenti, e ha chiamato questo meccanismo disambiguazione non monotonica. Come esempio ha preso il termine ball, nei due sensi italiani di «palla» e «danza». Il corpus di esempi porta ball ad associarsi sia con termini sportivi, come baseball, fan, che più consoni alle danze, quali dance, princess e così via. I casi grammaticali considerati sono adesso agente, recipiente e locazione, oltre a azione per il verbo. In frasi dove predomini un contesto sportivo o di danza l'interpretazione è ovvia, ma ci sono frasi particolari, come:

the diplomat threw the ball in the ball park for the princess

in cui il significato di ball oscilla più di una volta. All'inizio la parola diplomat facilita decisamente l'interpretazione della danza, e non è smentita da threw:

infatti il verbo si presta a fomentare l'ambiguità, potendo significare sia «lanciare» sia «dare inizio». Pertanto quando viene incontrata la parola ball il significato propende per il ballo, ma subito dopo il termine ball park (campo di baseball), che prende il ruolo di locazione, ribalta il senso di ball come «palla», ma per poco, infatti l'ultima parola è alla principessa, princess, che restituisce il significato di ball'attività, per lei decisamente più consona, di danza,

Patologie e psicopatologie del linguaggio

In questo capitolo si affronta il problema dei fondamenti evolutivi del linguaggio in relazione alles ue forme patologiche. La specificità etologica dei comportamenti linguistici è messa in relazione sia con i processi di evoluzione delle strutture filogenetiche, sia con la stratificazione delle funzioni intellettive, prospettando l'ipotesi che il linguaggio umano vada configurandosi come una proprietà evolutivamente emergente. Su questa base metodologica si traccia una classificazione delle patologie linguistiche nelle sue componenti genetiche, neurocerebrali e psicopatologiche. In particolare vengono posti a confronto i modelli teorici e i dati linguistici sperimentali sull'afasia e quelli sulla schizofrenia, questi ultimi in relazione anche all'ipotesi della Teoria della mente e dei principali paradigmi di ricreca della filosofia del linguaggio e dell'antropoanalisi (psichiatria fenomenologica).

1. PATOLOGIE LINGUISTICHE ED EVOLUZIONE

Come abbiamo visto nei capitoli precedenti, gli esseri umani possono esercitare la loro più complessa funzione intellettiva grazie a una serie di capacità fisiologiche, cerebrali e cognitive. Parlare è possibile perché nel corso della storia evolutiva l'Homo sapiens ha acquisito strutture specifiche per la fonazione e l'ascolto, per l'elaborazione cerebrale del processo di input-output vocale e per la possibilità di produrre rappresentazioni mentali con cui trasformare i dati in sistemi inferenziali, in opinioni e in credenze.

La specificità di queste strutture audio-vocali, cerebrali e cognitive rispetto alle altre specie animali è attestata da studi di diversa natura. La fisiologia comparata, l'etologia, le neuroscienze per un verso; per altro verso le scienze cognitive, comprendenti la linguistica, la neuropsicologia, la psicopatologia, la logica, la filosofia del linguaggio e, più in generale, tutte quelle discipline che cercano di descrivere i processi mentali e la formazione delle strutture ideative, rappresentazionali e argomentative. È evidente che mentre le prime operano sul terreno dei fondamenti biologici del linguaggio, e possono, quindi, utilizzare tecniche di indagine immediatamente applicabili agli oggetti fisici (l'apparato fonatorio e uditivo, il sistema nervoso centrale e periferico, la struttura morfologica complessiva dei corpi), le seconde possono solo inferire dalle produzioni naturali (suoni, parole, frasi, discorsi, atti e intenzioni linguistiche) o sperimentalmente provocate (procedure progetate in laboratorio o osservate nelle prestazioni indotto) il comportamento funzionale che ne indica la specificità. Poiché sia le strutture sia le funzioni presentano una loro storia evolutiva, entrambe sono poi soggette all'indagine ricostruttiva, con metodi, quindi, in parte empirici (paleontologia, antropologia fisica, zooarcheologia, biologia evoluzionista) e in parte speculativi (i diversi paradigimi «glottogonici»).

Sarebbe probabilmente un errore pensare, tuttavia, che lo studio delle patologie del linguaggio possa sesere ricondotto a due metodologie radicalmente diverse: l'una fondata sui dati certi della componente materiale e l'altra soggetta alle fluttuazioni interpretative delle speculazioni sul comportamento. E questo per una serie di motivi che sono recentemente emersi proprio grazie all'approccio evoluzionista.

Il primo è che la comparsa del linguaggio determina, per certi aspetti, una violazione, o un'anomala applicazione della logica della selezione naturale. Mentre, infatti, negli stadi prelinguistici la trasformazione dei comportamenti restava vincolata alla trasmissione genetica dei tratti vantaggiosi per l'adattamento, con l'emergere del linguaggio i vantaggi evolutivi manifestatis geneticamente si sono però potuti affermare solo grazie alla trasmissione culturale e all'adattamento sociale L'Ewontin 2000. Tomasello 1999).

L'anomala applicazione delle leggi selettive consisterebbe, in questo caso, nella possibilità di intervenire sulla sorte dei processi evolutivi nel primo caso, infatti, il vantaggio è tutto interno alla trasmissione ereditaria, impermeabile a qualsiasi volontà individuale o pressione sociale, nel secondo caso, al contrario, la potenzialità della trasmissione genetica è internamente inglobata nella capacità dei soggetti portatori di comunicarla in forme volontarie e via via sempre più socialmente articolate e organizzate [Dawkins 1986].

Il secondo motivo è che lo scopo principale dell'approccio evolutivo, ono è, come si è portati a pensare da un'impropri a accezione del darwinismo, quello di descrivere e spiegare una successione di trasformazioni continue e progressive, ognuna delle quali troverebbe una causa negli assetti più bassi e semplici degli stadi precedenti, bensi quello di portare alla luce le proprietà emergenti che caratterizzano ogni nuovo equilibrio, che si fonda geneticamente, ma si differenzia funzionalmente, da quelli che l'hanno preceduto.

Entrambi questi punti meritano di essere approfonditi perché determinanti nell'impostazione generale del problema delle patologie linguistiche che vedremo più avanti (cfr. infra, §§ 2 ss.).

1.1. L'anomalia evolutiva della selezione storico-naturale

Abbiamo già visto che non c'è un consenso definitivo della comunità scientifica sull'origine delle funzioni linguistiche (cap. I, § 3 e cap. II, § 2) e neppure sull'esistenza di un modulo genetico innato che possa spiegarne l'acquisizione e lo sviluppo (cap. I, § 3.3 e cap. III, § 1.1.3). Filogenesi, ontogenesi e sociogenesi sembrano intrecciarsi nei fatti linguistici tanto strettamente da scoraggiare spiegazioni totalizzanti e univoche

Ouesta constatazione non deriva tanto da una sfiducia nelle ipotesi biogenetiche o in quelle culturaliste, che hanno raggiunto un grado di dettaglio complessivamente soddisfacente, quanto dalla

peculiare modalità con cui avviene l'applicazione delle conoscenze biologiche alla spiegazione dei comportamenti umani conosciuti. Così non sembra opinabile che il nucleo filogenetico di ogni specie animale costituisca una sorta di «dente di arresto» se non per le funzioni superiori [Tomasello 1999, 241 almeno per quelle connesse allo sviluppo ontogenetico delle strutture morfologiche evolutivamente consolidate. La conformazione scheletrica, l'anatomia degli arti, la loro forma, non solo fanno presupporre, ad esempio, che una data specie animale corra, voli, strisci o nuoti, ma dovrebbero determinare senza alcuna eccezione la previsione di un certo comportamento motorio, indipendentemente dal contesto ecologico in cui il soggetto può venirsi a trovare. In un certo senso la filogenesi della maggior parte delle specie animali sembra condizionare irreversibilmente gli sviluppi ontogenetici degli individui. Le cose, tuttavia, non sembrano stare in questo modo nel caso degli umani.

Le foto riprodotte nella figura 6.1 ritraggono alcuni aspetti del comportamento di Kamala, una giovane enfant sauvage ritrovata nel 1920 Fonte: feralchildren.com e Singh e Zingg [1942]

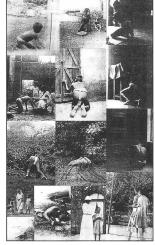


fig. 6.1. Momentidella vitadi Kamala.

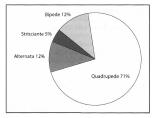
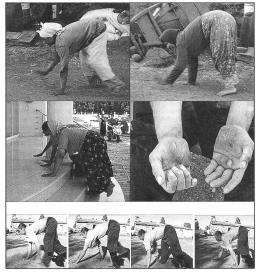


fig.6.2. Deambulazioneneali«enfantssauvages».

Fonte:feralchildren.com.elaborata.

all'età di otto anni assieme ad un'altra bambina. Amala, di diciotto mesi, in India, entrambe studiate dal reverendo J.A.L. Singh, rettore dell'orfanotrofio di Midnapore, e dal dott. S.P. Sarbadhicari che ne curò la salute dono il ritrovamento


Come si può vedere, e com'è ampiamente descritto nell'attenta ricostruzione di Singh e Zingg [1942] le due bambine non solo erano incapaci di parlare e non riuscirono, neppure in seguito, a pronunciare più di una dozzina di parole, ma deambulavano in postazione quadrupede e solo dopo un lungo ricondizionamento riuscirono a ritrovare la stazione eretta

Com'è noto dopo Brown [1957] e

Malson [1964], di questi casi se ne conoscono ormai parecchi. Secondo le ultime rilevazioni sono circa un centinaio le descrizioni di bambini allevati in ambienti animali, o confinati in isolamento totale dagli altri esseri umani. Purtroppo solo una piccola parte di queste descrizioni sono state realizzate, se non con metodologia scientifica, perlomeno con rigore informativo!. Tra i casi di cui abbiamo informazioni accertate sulla deambulazione (quarantadue soggetti) più del 70% presenta una postura quadrupede, come si può vedere dalla figura 6.2.

Si tratta di casi diversi da quelli segnalati di recente dall'antropologo Nicholas Humphrey, che ha indagato su una malformazione genetica (sindrome di Unertan dal nome dello studioso che l'ha scoperta), presentata da una famiglia di contadini turchi osservati per tre generazioni, che impedisce loro di elevarsi completamente sugli arti posteriori. In un saggio del 2005 [Humphrey, Skoyles e Keynes 2005] si riferisce di una diagnosi di ataxia del cervelletto e di assottigliamento del corpo calloso. Non è, tuttavia, accertata una precisa relazione tra l'anomalia cerebrale e la locomozione quadrupede, e non viene affatto esclusa un'eziologia ambientale [ibidem, 9], anzi il caso viene classificato come una sindrome multifattoriale.

Nella migliore delle ipotesi si tratta di ricostruzioni di taglio socioanti opologico [Newton 2004] che non aggiungono molto al modello medico-filosofico di J. Itard, autore dei celebri Mémoire e Rapport sur Victor de l'Aveyron pubblicati rispettivamente nel 1801 e nel 1806. In alcuni casi, come quello di Genie (che è tuttavia un'incredibile storia di deprivazione sociosensonale [cfr. Rymer 1994]), è seguito un dibattito scientifico di impostazione soprattutto psicolinguistica [Curtiss 1977, con bibliografia]. Lenneberg [1967] liqui**d**ava la questione con un giudizio lapidario: «le sole conclusioni sicure che si possono trarre dal gran numero di casi segnalati è che la vita in ambientistretti e bui, in tane di lupi, in foreste, o la vita rinchiusi in cantina da genitori sadici, non determina una condizione di salute e non porta a uno svilup po normale» [ibidem, 163]. Ciò non toglie che le forme di deambulazione e linguaggio non possono più essere annoverate fra i tratti della struttura filogenetica, a meno che tutti i casi (ormai più di 100) siano determinati da anomalie genetiche, il che è da escludere.

fiq.6.3. Deambulazione quadrupede dei membri diuna famiglia diun villaggionella Turchiameri dionale dovuta alla sindrome multifattoriale diUnertan

Fonte: Humphrey, Skoyles e Keynes (2005)

«una combinazione di fattori inusuali – genetici, fisiologici, psicologici e sociali» [ibidem, 11]. Gli autori non mancano, tuttavia, di osservare la stranezza di questa singolare pluralità eziologica che colpirebbe diversi membri di quella famiglia, come si può vedere nelle illustrazioni della figura 6.3.

Nel caso degli enfants sauvages un'eziologia genetica o una malformazione cerebrale è un'evenienza da escludere. Il tipo di deambulazione è certamente dovuta ai fattori di sviluppo ambientale: dei 30 casi di quadrupedismo solo 5 sono maturati in condizioni di isolamento in ambiente umano. mentre 25 casi sono dovuti a uno sviluppo in compagnia di animali.

Nonostante le limitazioni dovute alla disparità e all'attendibilità delle fonti, queste informazioni essenziali che provengono dai dati sugli enfants sauvages ci confermano uno dei fondamenti dell'etologia lorenziana: quello che vede la specie umana come la più «euritopica» (cfr. cap. II § 1.3), ovvero la meno condizionata dalla specie-specificità genetica [Lorenz 1959; Eibl-Eibesfeldt 1987].

Ouesto principio, secondo i l quale l'unica specificità degli umani consisterebbe nella mancanza di specificità [Lorenz 1959], è di solito riferito all'assenza di vincoli biologici soprattutto nelle funzioni superiori, di cui il linguaggio rappresenta l'aspetto più evidente ma non unico. Il caso degli enfants sauvages spinge, al contrario, più indietro la soglia del vincolo filogenetico: se anche un solo individuo sano della specie umana non sviluppa secondo un programma genetico irreversibile il raggiungimento della stazione eretta, ciò vuol dire che tutta la funzionalità morfologica e, a maggior ragione, psicocognitiva necessita, in questa specie, di un'attivazione sociale.

Nel caso dell'uomo, inoltre, l'attivazione sociale non può essere ricondotta alla semplice esposizione alla funzione (per es. attraverso l'imitazione) ma richiede un livello di precisazione maggiore. Contrariamente alla tendenza che si manifesta in tutte le specie animali cognitivamente meno sviluppate, in proporzione al loro grado di antichità evolutiva, i comportamenti più complessi, per funzionare, sembrano richiedere, infatti, l'acquisizione di tecniche specifiche.

Un piccolo ragno, l'Araneus diadematus [McNeil 1983], immobilizzato appena nato entro un tubo di vetro che gli impedisce qualsiasi movimento, liberato dopo la prima muta, sviluppa su minuscoli telai ragnatele di straordinaria complessità geometrica analoghe a quelle dei suoi conspecifici in natura. Un pulcino appena nato esce fuori dall'uovo e immediatamente corre, becca e raspa per terra, pigola con forza se perde il contatto con la chioccia e si scuote se si bagna [Eibl-Eibesfeldt 1967, 421, Così le anatre di Lorenz, appena nate, nuotano, si tuffano, esplorano il fondo col becco e con questo si bagnano sistematicamente le piume. In questi casi si parla di fixed action patterns, ovvero di movimenti che sarebbero determinati da «coordinazione ereditaria» [ihidem].

Con l'avvento dell'etologia cognitiva (cfr. cap. I, § 3.2) questa nozione è stata sottoposta ad un'attenta verifica. Stabilire la soglia dei comportamenti innati e indipendenti da qualsiasi addestramento richiede, infatti. l'acquisizione di osservazioni e di rigide metodologie sperimentali.

Anche senza bisogno di riconoscere l'attribuzione di stati mentali agli animali. infatti. Caro e Hauser [1992] hanno avanzato l'ipotesi che alcuni animali possano insegnare ai propri piccoli comportamenti specifici. Quando assistiamo a una modificazione del comportamento dei genitori solo in presenza dei figli e quando è possibile constatare che tale modificazione produce risultati nelle pratiche oggetto di istruzione, allora si può parlare di un effetto di addestramento. È stato così possibile accorgersi che anche comportamenti ritenuti per lungo tempo del tutto «naturali» o istintivi, come quelli della deambulazione, richiedono nei primati una qualche sorta di cura parentale (Maestripieri [1995; 1996], lo ha dimostrato per i macachi).

M. Tomasello [Tomasello, Kruger e Ratner 1993] ritiene che questo tipo di risultati ottenuti attraverso la sperimentazione in laboratorio riveli comportamenti che non sono riscontrabili nello stato di natura. Non c'è dubbio che si tratti di un'osservazione cruciale, recentemente rafforzata nel quadro di una ricostruzione più generale del problema delle origini culturali della cognizione umana [Tomasello 1999]. La critica di Tomasello fa leva su un effetto anomalo chiamato socializzazione dell'attenzione che si verificherebbe in tutti i casi in cui le scimmie antropomorfe vengono allevate in ambienti culturali umani. replicandone le condizioni ecologiche.

Nel quadro teorico che qui ci interessa mettere a fuoco, questa essenziale osservazione non è tuttavia pertinente. Anzi si può dire che la rilevazione di comportamenti animali in situazioni-limite, come possono essere quelle riscontrabili nelle patologie o tra gli enfants sauvages, costituiscono l'unico criterio per rispondere alle domande che qui formuliamo.

Non si tratta, infatti, in questo caso, di misurarsi con problemi difficilmente circoscrivibili come quello di stabilire l'analogia o l'omologia dei comportamenti intelligenti nelle diverse specie animali, ma, più limitatamente, di cercare di capire almeno quali possano essere le soglie minime del condizionamento filogenetico involontario e inintenzionale nello sviluppo ontogenetico degli individui (cfr. cap. II. § 1.3).

Da questa prospettiva il passo che separa la nozione di parental care da quella di addestramento a una tecnica specifica è decisamente lungo. Il motivo che rende difficile discriminare l'effetto di una generica assistenza parentale – che. probabilmente, è costitutiva di tutte le pratiche genitoriali, almeno nei mammiferi dall'induzione sociale di procedure complesse va ricercato infatti più nella natura dell'abilità che nel tipo di istruzione necessaria alla sua attivazione.

Senza bisogno di arrivare al linguaggio (su cui torneremo dopo) basterà fissare l'attenzione sul problema apparentemente semplice della locomozione bipede, e quindi del raggiungimento e mantenimento stabile della stazione eretta, esclusiva prerogativa, quest'ultima, della specie umana.

Gli studi antropologici su questo punto costituiscono uno dei capitoli più convincenti dell'epistemologia evoluzionista. A partire dall'immenso lavoro preparatorio svolto da Leroi Gourhan, per arrivare ai recenti studi sulla simulazione della deambulazione nei robot [Zhou e Ruan 1999; Vaughan 2003; Mivhashita, Ok e Hase 2003], è pervenuta a sempre maggior chiarezza la consapevolezza che il semplice camminare in permanenza sui due arti posteriori può essere considerato una sorta di miracolo fisio-morfologico forse anche maggiore dell'incremento e della specializzazione cerebrale che, comunque, da esso derivano.

Non è certo questa la sede per ricordare la complessa ricostruzione dell'intera storia della morfologia della mobilità che ha portato al bipedismo stabile.

Ciò che importa per i nostri scopi è:

 rilevare come non si sia trattato di una storia di abilità «regionali», circoscritte alla facoltà di locomozione, ma di un continuo riassestarsi complessivo degli

assetti morfologici attorno al centro riorganizzatore degli equilibri meccanici e fisio-cognitivi, culminati nella conquista di un nuovo «campo anteriore» [Leroi-Gourhan 1964, I, 39 ss.] centrato sulla manualità dedicata e sull'allargamento permanente dell'orizzonte visivo:

2. ricordare il grande svantaggio immediato che derivò dalla mutazione che introdusse nello scheletro dei vertebrati la possibilità di flettere in verticale la spina dorsale: «il bipedismo è una forma di deambulazione pericolosa e l'allungamento degli arti posteriori in un soggetto stabilmente bipede può essere considerato un handicap locomotorio. Esso moltiplica la probabilità dei danni tipici dei tendini umani quando il loro rapporto lunghezza-tensione determina una sfasatura delle proprietà inerziali dell'arto nel momento del contatto col suolo, oppure quando l'arto avverte un improvviso e irregolare caricamento durante lo scatto, o, ancor più nei rapidi cambiamenti di direzione» [Loveiov 2005, 120].

Alla possibilità di flettere in verticale la spina dorsale [Kidd 1998; Vilensky 1987], più che alla sua differenza di dimensioni e forma [MacLarnon 1996] rispetto a quelle di altri animali, va attribuita la sostanziale variazione della morfologia fisiopsichica introdotta con la specie umana. Variazione degli equilibri del corpo. incomparabilmente più instabili e complicati di quelli possibili dalla stazione quadrupede, ma, contemporaneamente, variazioni delle possibilità funzionali e cognitive, estremamente più sofisticate e potenti. Se l'evoluzione ha selezionato un tratto così svantaggioso da rendere precario addirittura il mantenimento dell'equilibrio, è, infatti, legittimo i potizzare che il bipedismo sia stato compensato da una serie di vantaggi funzionali tali da renderlo certamente il candidato più serio dell'unicità morfologica del genere umano. La stazione eretta è difficile da raggiungere, ma ha comportato l'allargamento della base del cranio e quindi lo sviluppo delle dimensioni cerebrali a cui dobbiamo, assieme al tratto vocale sopralaringeo [Lieberman 1975; 1991; 2002; 2003; 2004], la supremazia intellettiva dell'uomo².

Resta tuttavia, ed è questo il punto centrale della questione che qui ci interessa, che il raggiungimento della stazione eretta seppure resa possibile dalle strutture filogenetiche, non si presenta come un comportamento irreversibile nell'ontogenesi delle funzioni superiori.

Trattandosi di una modificazione introdotta da mutamenti imprevedibili che ristrutturarono in profondità l'ontologia della specie, la stazione eretta permane tuttora allo stato di «tecnica» appresa, soggetta, quindi, a patologie non solo organiche ma anche psichiche, sociali o, più ampiamente, come dimostrano i bambini selvaggi, ecologiche,

² Esistono, naturalmente, altri vantaggi come l'aumento della velocità in relazione al peso corporeo (accompagnato, tuttavia, da un «considerevole svantaggio geometrico» [Lovejoy 2005, 120]); un nuovo dispositivo di termoregolazione introdotto con l'allungamento del corpo: una più larga base del bacino che assolve alla funzione cruciale di struttura di supporto per il parto di feti dalla testa sempre più larga ecc. (bbidom). Tuttavia è difficile stabilire, in questi casi, quale sia la causa e quale la conseguenza. Il principio evolutivo dell'adattamento non si applica, infatti, con riferimento all'ambiente ma con riferimento ai soggetti «adatti». Su questo principio cfr. il cap. II.

Più complesso, ma sostanzialmente non diverso, è il caso del linguaggio. Nei sessantuno casi di enfants sauvages di cui si sono potute sinora documentare le performances - pur sempre con le riserve sulla attendibilità scientifica delle fonti - è comunque chiaro che solo una minima parte di essi attesta la presenza di residui linguistici (e si tratta sempre di casi di isolamento sociale in ambienti umani), come si può vedere dal grafico della figura 6.4.

Il dato, a differenza di quello sulla deambulazione, non sorprende affatto. Sappiamo già dai Mémoires settecenteschi di Itard [1801-1806: 1825] che risultò praticamente impossibile addestrare all'articolazione linguistica Victor, il ragazzo dell'Avevron-Non c'è dubbio, inoltre, che anche in questo caso le difficoltà di «riabilitazione» dipendono dal tipo di complessità richiesta dall'abilità

fig. 6.4. Linguaggionegli«enfantssauvages» Fonte: feralchildren.com.elaborata

Come il binedismo anche la capacità fisioarticolatoria deriva da una storia evolutiva di mutazioni successive e sovrapposte in milioni di anni. Infine. come è già stato osservato (cap. II, § 1.1), anche per l'acquisizione delle strutture morfologiche del linguaggio gli umani hanno pagato un caro prezzo a danno degli automatismi respiratori e nutrizionali: da ciò derivano, ad es., la vulnerabilità strutturale della specie umana in fatto di patologie respiratorie e dell'alimentazione, così come, a causa del raggiungimento della postazione eretta, le patologie dell'apparato morfoscheletrico. Vedremo più avanti che - secondo Crow [2000] - anche la più grave delle psicopatologie, la schizofrenia, sarebbe co-originaria al linguaggio e filogeneticamente causata dalla sua comparsa (cfr. infra, § 3.2).

D'altro canto è indubbio che le mutazioni strutturali non vengono «scelte» dalle specie animali. Esse sono il frutto casuale degli eventi biologici che solo lo sviluppo delle funzioni - nell'arco delle «sterminate antichità» [Vico 1744] - riconduce ad un adattamento stabile perché, nel frattempo, diventato «vantaggioso»

Nonostante l'incontestabilità di questo principio accade spesso che le discussioni sul linguaggio non tengano conto della sostanziale differenza tra le due fasi. Troppe volte si pensa all'evoluzione del linguaggio solo in termini di funzione, intellettualizzando eccessivamente il processo di adattamento. Occorre, al contrario, considerare separatamente le ragioni dei mutamenti della fase strutturale - che non possono essere spiegate se non tramite la ricostruzione della storia biologica - da quelle della fase funzionale - che emergono solo dalla storia culturale.

Nel quadro di questa dinamica evolutiva, l'anomalia della specie umana emerge prepotentemente poiché né il bipedismo né il linguaggio, hanno raggiunto lo statuto di contrassegni permanentemente filogenetici. In un certo senso l'evoluzione strutturale (morfologica) degli umani è insufficiente a mantenere la stabilità funzionale che deve essere costantemente rinnovata ad ogni ontogenesi. Così mentre le vocalizzazioni degli uccelli canterini o la danza delle api restano «fixed action patterns», le tecniche articolatorie degli umani, come quelle locomotorie, vanno imparate all'interno delle procedure ecologiche dei conspecifici.

Non è forse esagerato affermare che, proprio per questo motivo, lo studio delle patologie linguistiche, non può prescindere dalla specie specificità evolutiva degli umani. Ogni patologia che colpisce il linguaggio, infatti, richiede all'organismo storico-naturale un riequilibrio complessivo degli assetti sia strutturali che funzionali, per permettere la sopravvivenza adattata, in questo caso dell'individuo e non più della specie.

1.2. La qualità delle tecniche e i processi eco-cognitivi

Se l'apprendimento di tecniche specifiche, come la locomozione bipede, il linguaggio e la coordinazione manuale, non sono assimilabili ai processi di coordinazione motoria ereditaria e innata, ma, allo stesso tempo, differiscono dalle pratiche di addestramento «naturale» dei primati e di altre specie animali, a cosa dobbiamo la loro complessità e la possibilità stessa di fallire per una mancata attivazione sociale?

Per rispondere a questa domanda l'ipotesi generale della core knowledge (cfr. cap, I, § 3.1) non può venirci in aiuto. Da un lato, infatti, la pur condivisibile considerazione che gli esseri umani sviluppano una serie di capacità cognitive prima e indipendentemente dall'acquisizione del linguaggio non mette certo in discussione la specificità della forma cognitiva acquisita durante l'evoluzione con la statura eretta, la manualità fine e il linguaggio. Di fatto queste tecniche storiconaturali, sebbene si impiantino su strutture pre-esistenti (ma come potrebbe essere il contrario già solo per il fatto di esistere!) e sebbene non si manifestino in pieno del tutto spontaneamente, appartengono ormai ad uno stato nuovo e specifico dell'evoluzione cognitiva determinando, a loro volta, nuove forme di pensiero e di rappresentazione della realtà. Se, d'altrocanto, il presupposto della parentela, strutturale e funzionale, con le altre specie animali dovesse determinare l'azzeramento delle diversità cognitive correremmo il rischio di vanificare due secoli di ricerche, tornando a una fase aurorale del darwinismo, quando, come è già stato osservato (cfr. cap. II, § 2), la valenza ideologica del nascente evoluzionismo poteva portare al paradosso di considerare i sogni dei cani una forma primitiva di sintassi.

In questi due secoli di riflessione scientifica e filosofica, conseguenti al salutare bagno di ridimensionamento della prospettiva teleologica avviatosi con l'evoluzionismo, è emerso chiaramente che la differenza fondamentale fra Darwin e Lamarck consiste proprio nella valorizzazione della diversità strutturale, e nella conseguente divaricazione delle distanze funzionali, tra le specie. È il caposaldo dell'origine delle specie: non è mai la funzione a generare i mutamenti strutturali, le specie più adatte sopravvivono poiché la loro conformazione fisiologica permette loro l'adattamento alle condizioni ambientali, giammai viceversa.

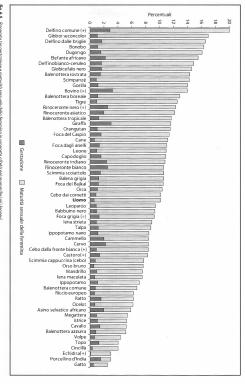
Se c'è un principio su cui regge tutto l'impianto rivoluzionario del darwinismo è proprio questo: non può essere l'uso a determinare la funzione, le modificazioni adattative avvengono sempre a partire da una mutazione biologica attorno a cui si configura un nuovo equilibrio che potrà, o meno, essere selezionato a causa dei vantaggi evolutivi che presenta.

È su questa base, beninteso, che si sono sviluppate tutte le ipotesi evolutive discontinuiste e la tesi delle «proprietà emergenti» che discuteremo approfonditamente più avanti (infra, § 1.3). Qui basterà rilevare un paradosso dell'ipotesi della core knowledge che, giustamente, presuppone una struttura modulare delle funzioni cognitive: la struttura modulare, che ha portato alla complessa architettura morfologica del cervello umano (cfr. infra. § 2.2), esiste solo in virtù della sua capacità di superarsi continuamente. Come vedremo nel prossimo paragrafo, infatti. l'intera storia biologica è costruita attorno al succedersi di strutture che si autonomizzano divenendo «moduli». Il concetto stesso di «modulo» - sia biologicamente che computazionalmente inteso - è connaturato all'idea di indipendenza, strutturale prima, funzionale poi, in un continuo processo dinamico che racchiude, allo stesso tempo, il mistero della continuità e della rottura, dell'imprevedibilità biologica del caso e della necessità sociale di sopravvivere [Pennisi 2005]. La risposta alla domanda precedente deve, di conseguenza, cercare di individuare le ragioni strutturali della differenziazione e della diversità tra sistemi eco-cognitivi certamente apparentati ma altrettanto certamente ormai radicalmente incomparabili.

In questa direzione una delle ipotesi apparentemente più attendibili, formulata dall'antropologia e dall'etologia cognitive, è che lo sviluppo delle tecniche per la locomozione e il linguaggio sarebbe dovuto alle particolari modalità ecologiche in cui si svolgono i processi educativi della specie umana. Questi ultimi sarebbero condizionati da un'eccezionale lunghezza della vita degli uomini e da un'anomala estensione del periodo di dipendenza da quelle che abbiamo prima chiamato cure parentali [Kaplan, Lancaster e Robson 2003a] che favorirebbero l'apprendimento dei comportamenti più complessi. Questa tesi, dunque, attribuirebbe a un dato ancora una volta «naturale» - anche se non «genetico» ma «ecologico» – la specificità di tali comportamenti, considerati vantaggiosi per la selezione adattativa.

La recente disponibilità di dati osservativi non più episodici ma sistematici e rilevati su larga scala rendono, tuttavia, questa ipotesi poco probabile. In particolare le grandi banche-dati dello Human Ageing Genomic Resources (HAGR), realizzata dall'omonimo Consorzio universitario di ricerca euro-americano, e quella del Max Planck Institute for Demographic Research, pubblicata da Carey-Judge [2002], hanno permesso un'elaborazione di dati statistici che ridi-

TAB.6.1. Specie animali più longeve


Specie	Nomecomune	ETA	CLASSE	PHYLUM
Lamellibrachia	Verme marino	250	09.Ane	02.Ane
Arctica islandica	Vongola artica	220	12.Mol	05.Mol
Balaena mysticetus	Balena boreale	211	01.Mam	01.Cor
Sebastes aleutianus	Pescepietra delleAleutine	205	05.Pes	01.Cor
Strongylocentrotus franciscanus	Ricci od i mare	200	11.Ech	04.Ech
Bivalvia	Molluschi bivalvi	200	12.Mol	05.Mol
Geochelonenigra	Testuggine gigantedelle Galápagos	177	03.Ret	01.Cor
Sebastesborealis	Pesce pietra dell'Atlantico sett. (o Scorfano di Norvegia)	157	05.Pes	01.Cor
Geochelonegigantea	Testugginegigantedelle Seychelles	152	03.Ret	01.Cor
Acipenserfulvescens	Storione di lago	152	05.Pes	01.Cor
Hoplostethusatlanticus	Pesce specchio dell'Atlantico	149	05.Pes	01.Cor
Allocyttusverrucosus	Oreodell'Atlantico	140	05.Pes	01.Cor
Terrapenecarolina	Terrapene a scatolacomune	138	03.Ret	01.Cor
Testudograeca	Testuggine greca	127	03.Ret	01.Cor
Homo sapiens	Uomo	122,5	01.Mam	01.Co
Emysorbicularis	Testuggine palustre europea	120	03.Ret	01.Cor
Sebastesruberrimus	Pescepietra dall'occhiogiallo	118	05.Pes	01.Cor
Huso huso	Storioneladano	118	05.Pes	01.Cor
Sebastesnigrocinctus	Pescepietra a bande nere	116	05.Pes	01.Cor
Sebastolobus alascanus	PescepietradelleAleutine	115	05.Pes	01.Cor
Balaenoptera physalus	Balenottera comune	114	01.Mam	
Anoplopomafimbria	Merluzzo nero	114	05.Pes	01.Cor
Balaenoptera musculus	Balenottera azzurra	110	01.Mam	
Sebastesbabcocki	Pescepietra a bande rosse	106	05.Pes	01.Cor
Acipensertransmontanus	Storione bianco	104	05.Pes	01.Cor
Epigonus telescopus	Re di triglie nero	104	05.Pes	01.Cor
Orcinusorca	Orca	100	01.Mam	01.Cor
Acipenserdabryanus	Storionedello Yangtze	100	05.Pes	01.Cor
Acipensersturio	Storione	100	05.Pes	01.Cor
Sebastes alutus	Pesce persico dell'oceano	100	05.Pes	01.Cor
Allocyttusniger	Oreodel Pacifico	100	05.Pes	01.Cor
Neocyttus rhomboidalis	Oreoromboidale	100	05.Pes	01.Cor
Pseudocyttus maculatus	Oreoaustrale	100	05.Pes	01.Cor

Fonte:db.hagr (adattato).

mensionano l'idea di un'eccezionale longevità della specie umana e, soprattutto, di un'anomala estensione del periodo di dipendenza dei piccoli, precisando, anche, le cause reali che possono permettere di considerare queste variabili come vantaggi evolutivi veri e propri.

Vediamone qualche aspetto. In primo luogo, come si può vedere dalla tabella 6.1, esistono specie animali molto più longeve dell'uomo. Alcune specie di pesci, di molluschi, di echinodermi, di lamellibranchi, ma anche di anfibi, rettil e mammiferi si pongono nel range di età massima 130-250 anni (longevità record registrate in individui della specie posti sotto osservazione).

In secondo luogo (vedi fig. 6.5) se compariamo i primi cento mammiferi più longevi in relazione alla percentuale che il periodo di gestazione e quello del raggiungimento della maturità sessuale (femminile) ricoprono in relazione all'età massima raggiungibile, emerge chiaramente che la situazione dell'uomo non si presenta differente da quella degli altri mammiferi, collocandosi in perfetta posizione intermedia.

Più complesso, ma sostanzialmente non diverso, è il caso del linguaggio. Nei sessantuno casi di enfants sauvages di cui si sono potute sinora documentare le performances - pur sempre con le riserve sulla attendibilità scientifica delle fonti - è comunque chiaro che solo una minima parte di essi attesta la presenza di residui linguistici (e si tratta sempre di casi di isolamento sociale in ambienti umani), come si può vedere dal grafico della figura 6.4.

Il dato, a differenza di quello sulla deambulazione, non sorprende affatto. Sappiamo già dai Mémoires settecenteschi di Itard [1801-1806: 1825] che risultò praticamente impossibile addestrare all'articolazione linguistica Victor, il ragazzo dell'Avevron-Non c'è dubbio, inoltre, che anche in questo caso le difficoltà di «riabilitazione» dipendono dal tipo di complessità richiesta dall'abilità

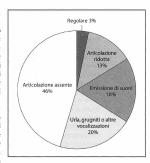


fig. 6.4. Linguaggionegli«enfantssauvages» fonte: feralchildren.com,elaborata,

Come il bipedismo anche la capacità fisioarticolatoria deriva da una storia evolutiva di mutazioni successive e sovrapposte in milioni di anni. Infine. come è già stato osservato (cap. II, § 1.1), anche per l'acquisizione delle strutture morfologiche del linguaggio gli umani hanno pagato un caro prezzo a danno degli automatismi respiratori e nutrizionali: da ciò derivano, ad es., la vulnerabilità strutturale della specie umana in fatto di patologie respiratorie e dell'alimentazione, così come, a causa del raggiungimento della postazione eretta, le patologie dell'apparato morfoscheletrico. Vedremo più avanti che - secondo Crow [2000] - anche la più grave delle psicopatologie, la schizofrenia, sarebbe co-originaria al linguaggio e filogeneticamente causata dalla sua comparsa (cfr. infra, § 3.2)

D'altro canto è indubbio che le mutazioni strutturali non vengono «scelte» dalle specie animali. Esse sono il frutto casuale degli eventi biologici che solo lo sviluppo delle funzioni – nell'arco delle «sterminate antichità» [Vico 1744] riconduce ad un adattamento stabile perché, nel frattempo, diventato «vantaggioso»

Nonostante l'incontestabilità di questo principio accade spesso che le discussioni sul linguaggio non tengano conto della sostanziale differenza tra le due fasi. Troppe volte si pensa all'evoluzione del linguaggio solo in termini di funzione, intellettualizzando eccessivamente il processo di adattamento. Occorre, al contrario, considerare separatamente le ragioni dei mutamenti della fase strutturale che non possono essere spiegate se non tramite la ricostruzione della storia biologica - da quelle della fase funzionale - che emergono solo dalla storia culturale.

Infine se mettiamo in relazione l'età con il tasso di accrescimento delle specie (cioè con il rapporto fra il peso alla nascita e il peso raggiunto in età adulta) possiamo osservare come le variabili da cui dipende il vantaggio evolutivo sono da ricercare più nei fattori che permettono di ottimizzare il dispendio energetico (le necessità alimentari e il tipo di dieta, l'organizzazione sociale, la divisione dei compiti ecc.) che non quelli più immediatamente «naturali» come l'accrescimento corporeo, le dimensioni ecc. (fig. 6.6).

Ancora una volta, quindi, occorre guardare più alla tipologia e alla natura delle abilità e delle tecniche che sono state sviluppate nel corso dell'evoluzione rendendole particolarmente vantaggiose che ai presupposti «naturali» evidenziati dalla conformazione filogenetica.

La «qualità» del consorzio sociale entro cui maturano queste abilità e tecniche è stata sottolineata da Tomasello [1999]. Secondo la sua tesi l'Homo sapiens. che pure condivide con gli altri primati una stessa organizzazione cerebrale e corporea, ha sviluppato una socialità specie-specifica che rende incomparabili le prestazioni cognitive con quelle dei suoi antenati. Anche i primati, infatti, mostrano abilità cognitive che sembrano simili a quelle umane come una memoria localizzata nell'ambiente, una logica alternativa nel programmare gli spostamenti spaziali, una capacità di seguire i movimenti visibili e invisibili degli oggetti (principio piagetiano della conservazione della materia e della permanenza degli oggetti) e abilità avanzate di tipo categoriale, comparativo e inferenziale (come l'insight nel problem solving). Queste capacità danno luogo anche nei primati a precise forme di vita sociale stabili fondate sul riconoscimento dei conspecifici e persino su una serie di principi cooperativi applicati all'apprendimento, alla formazione di alleanze e coalizioni, alla previsione dei comportamenti degli individui che compongono i gruppi. Infine anche i primati sembrano comprendere alcune relazioni astratte implicite nelle relazioni sociali: per es., quando vengono attaccati si vendicano, a volte, non solo contro chi li ha colpiti ma anche contro i parenti di questi ultimi [ibidem, 35]. Tuttavia, secondo Tomasello, i primati «non vedono il mondo nei termini delle "forze" intermedie e spesso nascoste - le cause sottostanti e gli stati intenzionali/mentali - che sono tanto importanti nel pensiero umano» [ibidem, 37].

Sul motivo per cui i primati non riescano a mostrare comportamenti spiegabili alla luce di una «teoria della mente» le spiegazioni di Tomasello lasciano, tuttavia, qualche spazio per ulteriori riflessioni.

Non si tratta, infatti, di negar loro l'attribuzione di modalità anche sofisticate di memorizzazione dell'esperienza per attuare previsioni sul comportamento altrui (sanno, ad es., perfettamente cosa vuol fare chi si dirige verso una fonte di cibo). Il problema, secondo Tomasello, è, semmai, che i primati non riuscirebbero a generalizzare lo «scopo» del comportamento che vedono attuarsi davanti ai loro occhi, estendendo le previsioni a una serie di altri possibili contesti. In altre parole: «i primati non umani comprendono molte delle relazioni antecedenteconseguente ma non sembrano comprendere le forze causali come mediatrici di queste relazioni» [ibidem, 41].

É la cecità cognitiva di fronte alla nozione astratta di causalità, quindi, la ragione

della differenza fra i sistemi cognitivi umani e quelli animali? Se così fosse la differenza stessa resterebbe indimostrabile. Chi ci dice, infatti, che gli esseri umani agiscano sulla base di un principio generale di causalità? Com'è noto, secondo, Wittgenstein, le proposaizoni che esprimono relazioni causali sono intrinsecamente congetturali. La causalità è una spiegazione meccanicista che, potendo riguardare solo l'apparenza fenomenica, non può mai essere assunta come criterio generale, pena la continua potenziale fallibilità delle asserzioni e/o dei comportamenti. L'attribuzione della causalità ha sempre e solo un senso regionale, contestualizzato, specifico. Dal punto di vista della sua natura euristica specifica l'applicazione umana di questo principio non si differenzia affatto da quella degli altri animali. È semmai il contesto intersoggettivo e le condizioni ecologiche entro cui si svolge il processo di apprendimento (quello che Wittgenstein chiama una d'orma di vita») che rende qualitativamente diverso il principio di causalità presso la specie umana.

Nella ricostruzione di Tomasello questa consapevolezza è chiarissima. La formula per definire il nuovo livello cognitivo raggiunto dal principio di causalità entro l'ambito evolutivo della specie umana è quella della «attenzione congiunta (condivisa)» [ibidem, 122]. Si tratta di un principio esplicitamente wittgensteiniano che spiega in termini antropoevolutivi il rivoluzionario ruolo cognitivo assunto dal linguaggio nella storia dell'evoluzione. Secondo tale principio gli atti di riferimento linguistico non avvengono per la connessione univoca del simbolo (sic) e del suo referente – che non spiegherebbe affatto tutte le categorie linguistiche che non indicano oggetti specifici, come i verbi, le preposizioni, gli articoli, le congiunzioni, gli avverbi ecc. - ma attraverso un processo di focalizzazione del senso che coinvolge, in uno specifico e contestualizzato atto di cooperazione comunicativa, due o più conspecifici appartenenti a una medesima «forma di vita». La differenza tra l'apprendimento umano e quello delle altre specie – comprese quelle già citate (supra, § 1.1) – consisterebbe, quindi, nel fatto che esso mette a contatto i conspecifici (per es. genitori-figli) attraverso un «format rappresentazionale interattivo», inedito nella storia evolutiva, basato:

- sull'azione che si sta facendo in quello specifico momento:
- b. sull'inversione continua dei ruoli della comunicazione:
- sul raggiungimento della condivisione degli scopi;
- d. sull'intersoggettività della comprensione contestuale.

Naturalmente, anche in questo caso, lo sfondo generalissimo su cui questo specifico format rappresentazionale si fonda non nasce nel vuoto evolutivo. Le componenti precrettive e la stessa architettura dei processi attentivi affondano le loro radici in contesti ecologici preumani e prelinguistici. Ma è proprio l'embodiment linguistico che cambia il segno alla struttura cognitiva del rapporto interazionale umano (birdem. 133):

Quel che rende i simboli linguistici effettivamente unici dal punto di vista cognitivo è il fatto che ciascun simbolo esprime un particolare punto di vista su un entità o un eventor questo oggetto è nello stesso tempo una rosa, un fiore e un regalo. La natura prospettica dei simboli linguistici moltiplica indefinitamente il grado di specificità con cui essi possono essere usati per manipolare l'attenzione degli altri e questo fatto ha profonde implicazioni per la natura delle rappresentazioni cognitive.

Il fatto che il linguaggio non denomini oggetti universali, ma punti di vista particolari su oggetti contestualizzati durante atti interazionali all'interno di giochi linguistici formulati sullo sfondo ecologico di forme di vita comuni, definisce l'attenzione condivisa come un frame pubblico del tutto umano irriducibile ad altre forme di socialità. Lo scambio dei ruoli in questa particolarissima modalità di condivisione dell'attenzione diventa, con il linguaggio, una forma di incorporazione della soggettività all'interno di un rapporto che cerca pragmaticamente l'oggettività: cioè l'intesa sull'evento o sull'atto. Già Émile Benveniste aveva d'altro canto individuato nel linguaggio una proprietà fondativa dell'io che oltrepassa di molto la funzione comunicativa. Il linguaggio fonderebbe la possibilità stessa della coscienza per alterità e «per contrasto» [Benveniste 1966, 312-313; cfr. Lo Piparo 2001; 2006];

io non uso io se non rivolgendomi a qualcuno, che nella mia allocuzione sarà un tu. È questa condizione di dialogo che è costitutiva della persona, poiché implica reciprocamente che io divenga tu nell'allocuzione di chi a sua volta si designa con io. [...] Il linguaggio è possibile solo in quanto ciascun parlante si pone come soggetto, rimandando a se stesso come io nel suo discorso. Per ciò stesso, io pone un'altra persona, quella che sebbene completamente esterna a me diventa la mia eco alla quale io dico tu e che mi dice tu. La polarità delle persone, è questa la condizione fondamentale nel linguaggio, il cui processo di comunicazione non è che una conseguenza del tutto pragmatica.

L'utilizzazione della filosofia linguistica - per la prima volta evocata da un etologo evoluzionista qual è Tomasello - ripropone, quindi, un problema sostanziale per le scienze cognitive del linguaggio: è certo che esistano antecedenti comunicativi della nozione di linguaggio nella storia evolutiva delle specie, ma le proprietà emergenti del linguaggio comportano l'apparizione di nuove forme di cognizione che con la comunicazione hanno solo una parentela lontanamente strumentale. Rappresentare la realtà e rappresentarsi all'interno di essa come un'entità soggettiva a sé stante che si specchia solo nelle altre soggettività, per definizione linguisticamente identificabili, è un fatto esclusivamente umano, come anche la Teoria della mente comincia a intravedere (cfr. cap. I, § 4.1 e cap. III, § 5.2). Se non comprendessimo questo punto, le psicopatologie diverrebbero del tutto incomprensibili (cfr. infra, §§ 3 ss.) [cfr. anche Lo Piparo 2001].

Il riuscito tentativo di Tomasello di applicare una filosofia linguistica così apparentemente lontana dall'etologia evoluzionista alle grandi questioni ricostruttive dei fondamenti biologici della cognizione non sembra, tuttavia, determinare un azzeramento di queste ultime. Diversamente, infatti, da quanto sembra supporre lo stesso autore – forse troppo preoccupato di giustificare la propria apparte-

nenza di campo alle scienze della natura3 – la sua efficace ricostruzione della socialità linguistica, che distinguerebbe l'apprendimento degli umani da quello delle altre specie, non entra affatto in contraddizione con l'idea – stranamente attribuita a Chomsky - secondo cui il linguaggio sarebbe «il frutto di una bizzarra mutazione genetica indipendente dagli altri aspetti della cognizione e della vita sociale dell'uomo» [Tomasello 1999, 119]. Che una mutazione genetica. apparentemente insignificante, come quella individuata da Lieberman [1975; 1991; 2002; 2003; 2004] nella comparsa del tratto vocale sopralaringeo si sia manifestata circa 200,000 anni fa, è semplicemente un fatto (paleo)storico. Così come fatti storici, riccamente documentati da Leroi Gourhan [1964a: 1964b: 1983: 1984: 1992], sono la comparsa di nuove tecnologie nella lavorazione di attrezzi e suppellettili, l'improvviso sorgere di arti figurative parietali, di miti cosmogonici e di riti funerari e religiosi, in tempi rapidissimi (da 50.000 a 10.000 anni fa). È un fatto, insomma, che dal momento in cui la specie umana dispose non solo di uno strumento di comunicazione più potente ma, soprattutto, di un inedito meccanismo di generazione di rappresentazioni e autorappresentazioni. la cronologia dei progressi strumentali e simbolici abbia bruciato tutti i consueti ritmi di sviluppo. Questo fenomeno, per di più, accade contemporaneamente in luoghi assai distanti tra loro: «l'estendersi della simbologia figurativa fino ai confini dell'area (l'Europa dall'Atlantico al Don) è probabilmente dovuta a una diffusione per contatto» [Leroi-Gourhan 1964c, 102].

È solo probabile (ma certo assai ragionevolmente) che i meccanismi degli atti linguistici caratterizzati dal format interattivo dell'attenzione condivisa, si siano sviluppati soprattutto nel momento in cui l'hardware fisiologico del linguaggio ha potuto permettere un'interazione del tutto esclusiva e concentrata attorno agli atti comunicativi cooperativi. È d'altro canto ovvio che entrambi i fenomeni - mutamento genetico ed evoluzione culturale - si innestino su un lunghissimo e graduale processo di trasformazione corporeo-cognitiva delle specie animali superiori, come lo stesso Leroi-Gourhan [1964a] e tutta l'attuale antropologia evoluzionista hanno dimostrato sia nei lavori sullo sviluppo delle tecniche sia in quelli sulla storia evolutiva della locomozione e del bipedismo [Lovejoy 2005; Hansen, Childress e Knox 2004; Kidd 1998; Vilensky 1987; MacLarnon 1996; Abitbol 1995]. Ciò che, in qualunque caso, si può affermare senza voler forzare in alcun modo lo sviluppo di ricerche intrinsecamente problematiche è che la comparsa del linguaggio articolato debba essere considerata, dalla prospettiva di chi indaga sulla natura e la storia dei processi cognitivi, come l'affacciarsi di una nuova proprietà emergente nello scenario evolutivo.

Singolare questa sorta di excusatio non petita: «sfortunatamente, nell'odierno clima intelletuale nai positione potria paparire a qualche studioso come di tipo essenzialmente genetico: l'adattamento sociocognitivo che caratterizza l'uomo moderno sarebbe una sorta di formula magica che differenzia la nostra spoce dagli altri primatti. Ma questa e un'idea shagliara che ampiato del differenzia la nostra spoce dagli altri primatti. Ma questa e un'idea shagliara che gruppi di individui, in tempi storici co ntospentici, per creare le abilità e i prodotti cognitivi peculiari della spocie umanasi (Tomasallo 1999, 23).

1.3. Patologie linguistiche e proprietà emergenti

Secondo la teoria dei sistemi complessi, cioè delle strutture biologiche altamente strutturate e gerarchizzate, una proprietà si dice emergente quando, pur dipendendo dagli stadi precedenti di organizzazione della materia, non può più essere spiegata con questi ultimi: «che cosa vorrebbe dire per esempio che una molecola d'acqua è trasparente o, peggio ancora, che è liquida e che bagna? O che un atomo di carbonio è capace di tagliare il vetro? O che una cellula del nostro cervello conosce la geometria?» [Boncinelli 2002, 11]. Allo stesso modo per spiegare alcuni fenomeni – sia in uno stato fisiologico che in uno patologico - del linguaggio e della mente, come ad es., l'incassamento sintattico, l'indessicalità. la categorizzazione semantica, la teoria della mente ecc., non sembra più pertinente non solo il livello fisiochimico o biogenetico dell'evoluzione degli organismi, ma, probabilmente, neanche quello fisio-articolatorio e persino etologico-comportamentale su cui pure si possono fondare le spiegazioni di altre funzioni più semplici delle specie-specificità animali.

Ma se il linguaggio è una proprietà evolutiva emergente di cui non percepiamo ancora i precisi confini con le metodologie sinora applicate alle forme cognitive degli stadi precedenti, e se, come abbiamo visto (supra, § 1,2), esso sfugge alla dimensione esclusiva della selettività filogenetica, pur manifestando un'evidente vantaggiosità derivata dalla trasmissibilità culturale, che senso ha il tentativo delle neuroscienze di mapparne la modularizzazione delle prestazioni e di comprenderne le alterazioni patologiche sulla base di una loro modificazione?

Anche a questa domanda, cruciale per gli aspetti patologici del linguaggio che ci apprestiamo ad affrontare, non è possibile rispondere in maniera riduttiva. Ouando parliamo oggi di modulo intendiamo, infatti, una sottoparte della struttura materiale di un corpo che ha assunto una certa funzione da cui dipende un dato comportamento osservabile. Con la prospettiva cognitivista questa concezione generale – di per sé antichissima – ha assunto due connotati assiomatici che rendono il modularismo una costruzione tecnicamente «ben definita»:

- la funzione svolta da un modulo, per quanto complessa essa appaia, deve esseresempre definibile nei termini di un calcolo algoritmico esplicitabile (quindi potenzialmente simulabile);
- 2. l'associazione fisica di tale funzione con una parte del corpo non può essere diffusa ma precisamente localizzata e, nel caso delle funzioni intellettive superiori. in segmenti determinati del sistema nervoso centrale.

La morfologia degli organismi viventi, d'altro canto, è, per certi aspetti, decisamente compatibile con gli assiomi del modularismo. La loro lunga storia evolutiva può anzi essere interamente riscritta – e lo ha di recente proposto Boncinelli [2002] - come la storia del progressivo segregarsi di nuclei che svolgono un ruolo computazionale sempre più raffinato in nidificazioni materiali sempre più protette dal resto dell'organismo cellulare. A ogni livello di segregazione avvenuta (modularizzazione cellulare) corrisponde la preservazione di un insieme di proprietà emergenti che configurano un nuovo stato, irriducibile al precedente ma ad esso in qualche modo connesso da restrizioni invalicabili.

Sebbene non si è in grado di individuare alcuna precisa datazione, siamo ragionevolmente certi, ad esempio, che, ad un certo momento, all'interno delle prime cellule comparse sulla terra le istruzioni genetiche si sono polarizzate in una molecola di DNA o RNA che si è separata dal resto della cellula. Nel processo di identificazione specie-specifica - guidato dal caso dell'invariabilità fisica applicata alle differenziazioni ambientali – la costanza e ripetibilità della trasmissione riproduttiva si sono racchiuse nel genoma. Alcune cellule hanno sancito la segregazione fisiologico-funzionale con lo sviluppo di uno specifico nucleo: gli eucarioti distinti dai procarioti per la diversa composizione di un nucleo in cui sono presenti una quantità fissa (costante per ciascuna specie) di cromosomi in cui è specificamente localizzato il DNA portatore delle istruzioni genomiche. Negli organismi pluricellulari questo processo di segregazione modulare fisiologico-funzionale ha determinato una specializzazione tra cellule germinali e somatiche. In ordine di tempo l'ultima fase segregazionale (quindi modulare) dell'assetto morfogenetico ha portato alla reclusione, nel cervello, di un'ulteriore specializzazione funzionale. In un senso geneticamente corretto possiamo – in accordo con Boncinelli – considerare il cervello un nuovo «nucleo» biologico al servizio della complessificazione progressiva e teoricamente indefinita dell'evoluzione delle facoltà animali superiori. Ma. detto questo, possiamo adesso mettere in relazione diretta i comportamenti e le procedure intellettive di alto livello con lo stato «cerebrale» dell'assetto evolutivo?

La nozione di «proprietà emergente» che abbiamo prima brevemente descritto sembrerebbe a prima vista scoraggiare una risposta positiva svuotando di contenuti il paradigma modularista. I «moduli» isolati (di natura fisica, chimica, biogenetica, fisiologica ecc.) non sono, infatti, sufficienti a fornire la «causa» dei comportamenti che scaturiscono dall'integrazione funzionale di molte e diverse proprietà emergenti del linguaggio. Ouesta impostazione, tuttavia, espone la teoria del linguaggio all'euristica olistica, aprendo pericolosi spazi per le tendenze più irrazionalistiche del dibattito contemporaneo. Per sfuggire a questa insidiosa dicotomia teorica occorrerebbe considerare la convergenza tra istanze modularistiche e olistiche alla stregua di un processo dinamico continuo. È chiaro per qualunque biologo, almeno da Jacques Monod in poi, che la funzione di una progressiva ricerca di segregazione modulare costituisce lo stratagemma «necessario» della materia per preservare la possibilità riproduttiva dalla variabilità introdotta dal caso (cioè dall'indeterminabilità delle mutazioni genetiche). In altri termini ogni segregazione modulare funziona come un algoritmo per mettere al sicuro i condizionamenti strutturali che filtrano la variabilità ambientale (endogena o esogena) assicurando la costanza e la persistenza degli organismi.

Negli sviluppi attuali della genetica appare sempre più chiaro che i processi individualizzanti, cioè la formazione dell'identità, della coscienza, dell'io e del sé, sonoresi possibili intanto dalla persistenza temporale dell'organismo nel tempo, che è una conseguenza diretta dell'accumulazione di strati funzionali autogestiti, ovvero modularizzati e quindi resi autonomi dalla lotta per la sopravivienza. Senza questo spesso strato di ammortizzatori procedurali «automatici» nessun sondaggio sperimentale verso l'approfondimento delle possibilità funzionali potrebbe più essere compiuto. Se l'organismo dovesse preoccuparsi di come le cellule si difendono dagli attacchi esterni, o di come gli organi interni svolgano il compito di far circolare il sangue, respirare, dormire, ma anche, in progressione, di attivare la locomozione, la nutrizione, lo scambio di informazioni elementari e. infine, anche di gestire la comunicazione fàtica, la selezione dei giochi linguistici, la referenzialità letterale ecc., sarebbe impossibile qualsiasi complessificazione dei processi individualizzanti. La modularizzazione, quindi, svolge un ruolo biologico fondamentale che tenta di rendere automatica e «definitiva» qualsiasi procedura complessa.

Nei processi evolutivi, tuttavia, nessun esito può essere dato per scontato. Non è detto, cioè, che un insieme di proprietà apparentemente emergenti debba forzatamente dar luogo ad un nuovo stato più complessamente modularizzato dei precedenti: in tal caso l'emergenza abortita continua ad essere spiegabile con le modalità degli stati su cui si innesta. È il caso dell'articolazione motoria degli apparati vocali dovuta a una mutazione genetica fissatasi in un tratto genetico (FOXP2) che risale ai primi roditori e poi ai primati, in cui non si è evoluto, per passare agli ominidi e infine all'Homo sapiens, entro cui, invece ha potuto svilupparsi al servizio di una serie di nuove proprietà emergenti che hanno portato all'attuale quadro di complessità funzionale (cfr. cap. II, § 1.2 e in fra, § 2.1). Mentre, quindi, nel caso dei roditori e dei primati non umani il quadro di spiegazioni genetico-biologiche appare sufficiente a spiegare l'esercizio dell'articolazione dei movimenti orofacciali, nel caso degli esseri umani tale quadro diventa una condizione materialmente fondante ma dall'euristica irrilevante per la spiegazione di tutto ciò che il sapiens ha saputo poi fare col (e del) linguaggio.

Sino a quando una procedura complessa non si è «modularizzata» definitivamente essa appare, quindi, come un insieme di procedure parziali insufficienti a definire uno stadio. Poiché, tuttavia, questo processo si invera nella genetica delle popolazioni e scaturisce nel vivo delle transazioni biologiche dell'organismo con l'ambiente, non possiamo che considerarlo una sorta di sondaggio, un tentativo di raggiungere un assetto evolutivamente stabile.

Il caso delle patologie del linguaggio sembra il terreno elettivo per saggiare le possibilità esplicative di questo modello biologico basato sulle proprietà emergenti. Confrontare, infatti, direttamente tale modello col pieno funzionamento fonetico, sintattico, semantico e pragmatico del linguaggio ordinario potrebbe prestarsi a fraintendimenti ed equivoci. È implicita, infatti, nell'uso che abbiamo fatto di termini come «tentativi» o «sondaggi», la consapevolezza che non si è ancora in grado di stabilire quali siano tutte le proprietà emergenti del linguaggio che un modello teorico debba spiegare.

Se, per esempio, ci accontentassimo di isolare come oggetto di analisi le proprietà articolatorie, nulla ci vieterebbe di considerarle sufficientemente spiegate dalla fisiologia del tratto vocale sopralaringeo che si affaccia nella storia evolutiva con i correlati fisiologici dell'Homo sapiens, a sua volta fondato sul livello filogenetico umano della storia del FOXP2. Di tutto ciò abbiamo ormai sufficienti indizi per considerare possibile in un futuro non lontano lo svelamento dei misteri degli algoritmi dei moduli fonetici.

In un certo senso – ma con molta più difficoltà nella precisazione dei dettagli
– anche il lavoro trentennale della grammatica generativa e l'idea chomskiana
della computabilità sintattica (cfr. cap. III, 52) potrebbero già, alla luce delle
conoscenze neuroscientifiche attuali, essere considerate una base fondata per
avallare l'esistenza di funzioni computazionali biologicamente modularizzate,
come cercheremo di mostrare più avanti (in fa. § 2.2).

Cone cettaterino mostate piu avaita (19/10, 2-2-2).

Come il cimitero della modularizzazione biogenetica. Certamente, dalla svolta linguistica in poi, alcuni capisaldi teorici del funzionamento dei fondamenti referenziali del significato hanno trovato solide spiegazioni di natura logico-argomentativa, quindi, probabilmente, includibili nella classe di proprietà regolate dalla computaliti biologica. Con altrettanta evidenza, tuttavia, è emerso che la struttura logico-argomentativa del linguaggio non esaurisce affatto il tema – biologicamente centrale – del primato della coscienza, dell'individualità e quindi della natura ontologica del significato. Su questo terreno possediamo solo brandelli disorganici di teoria prodotta dalla speculazione filosofica più staccata dal confronto con la sperimentalità empirica, e anzi programmaticamente ostile a essa: un insieme di studi involuti in prospettive olistiche del tutto defisicizzate (fenomenologia, ermeneutica, rappresentazionalismo puro ecc, eft, can L. 5.1).

Come dire: quando l'oggetto da spiegare diventa una proprietà emergente complessa si tende a escludere a priori la possibilità di scoprirne il radicamento biologico. In questo quadro non è quindi un caso che gli unici tentativi di coniugare lo studio delle proprietà semantiche con i processi cognitivi e i loro correlati morfologici siano emersi, al di fuori della filosofia del linguaggio, proprio con la ricerca applicata delle scienze cognitive alle patologie linguistiche. Anche in questo caso, tuttavia, il gran numero di studi sperimentali ha finito col concretizzarsi più nel tentativo di definire la mappatura neurale delle proprietà lessicali (l'etichettatura e i formati del lessico) che con quello di individuare le proprietà evolutivamente complesse degli usi semantici e delle loro valenze ontologiche. L'unico approccio che ha tentato di esplorare quest'ultima strada sembra essere stato quello della psicopatologia del linguaggio. Lo studio delle psicosi, infatti, ha rivelato una tipologia di disturbi semantici difficilmente rubricabili sotto l'etichetta del «deficit»: indizio, quindi, di proprietà emergenti del linguaggio di cui non si è ancora accorta né la speculazione filosofica né lo sperimentalismo cognitivista. All'interno di questo insieme di studi spiccano per importanza quelli sulla schizofrenia. I soggetti schizofrenici, infatti, mostrano una fenomenologia semantica che non trova spiegazioni né nella modularizzazione delle funzioni articolatorie (come invece accade nell'afasia, nelle alessie, nelle agnosie ecc.) né, tantomeno, in quella delle funzioni sociali, venute recentemente alla luce con gli studi neuroscientifici sulla mappatura delle abilità attribuite alla teoria della mente [U. Frith 2001: U. e Ch. Frith 2001: Abu Akel 2003a; Gallese 2003] (si tratta di contributi presuntamente adatti a spiegare l'autismo, la sindrome di Asperger ecc.). In altre parole i disturbi linguistici della schizofrenia non coinvolgono né gli automatismi fonetici o articolatori, né la morfologia o la sintassi, né la conoscenza del lessico o delle regole di composizione semantica [Irigarav 1985; Pennisi 1998], Secondo gli ultimi studi, inoltre, la schizofrenia non è soggetta alla cecità inferenziale o empatica, che, addirittura, appare esorbitante negli schizoparanoidi [Pennisi 1998, 102 ss.: Abu Akel e Bailey 2000] (cfr. cap. I. § 4.1.2 e infra, § 3.2.1). Se si volesse – ma è solo una schematizzazione di comodo - definire il prius del disturbo linguistico della schizofrenia si potrebbe sintetizzare solo nella generica formula della sovrapproduzione di senso o di inferenzialità logica. In altre parole ciò che appare, almeno a prima vista, dalla fenomenologia semantica degli schizofrenici è la loro incapacità di contenere le rappresentazioni e le interpretazioni del senso a un livello normativo standard.

È ovvio che ogni volta che ci si appella al livello normativo delle regole linguistiche si tocca con mano l'inefficienza dei criteri modulari.

Se diciamo che il discorso di un qualunque parlante appare «eccentrico», o che le sue sottili argomentazioni indicano un eccesso di inferenze rispetto ai fatti, o che le sue espressioni rivelano una lussureggiante produzione di nessi inconsueti tra i concetti o le idee, nello stesso momento neghiamo decisamente che i suoi «centri» della lateralizzazione cerebrale produttori del linguaggio non funzionino. Altrimenti detto: grandi filosofi, eccellenti avvocati, scrittori o poeti profondi si distinguono negli usi linguistici per originalità, abilità retorica o creatività lessicale senza che ciò indichi l'anomalia delle loro localizzazioni cerebrali.

Oltrepassare il livello normativo standard dei costrutti semantici significa solamente produrre costruzioni concettuali e linguistiche che riflettono credenze. filosofie, concezioni del mondo, insiemi di rappresentazioni formalmente (proceduralmente) regolari ma che necessitano di sforzi interpretativi maggiori da quelli ordinariamente richiesti per essere compresi.

Da questo punto di vista lo sforzo di un lettore per capire Essere e tempo o per gustare le Poesie a forma di farfalla di Dylan Thomas non è di natura diversa da quello compiuto da un qualunque psicopatologo che cerca di svelare il senso riposto dei neologismi, dei paralogismi o delle argomentazioni capziose di un delirio di persecuzione di un paziente schizofrenico.

In entrambi i casi il lettore o lo psicopatologo attrezzato arrivano sempre a ricostruire quella che Wittgenstein – parafrasando Freud – definiva «la chiave» del gioco linguistico messo in atto (cfr. infra. § 3,2,2). In altri termini qualsiasi «disturbo normativo» della semantica è sempre un'illusione cognitiva derivante dall'alterità e pluralità delle «forme di vita» (Wittgenstein) o delle «modalità di esistenza» (Binswanger) e non dal malfunzionamento dei centri cerebrali.

Da ciò che abbiamo sinora detto scaturiscono alcune conseguenze:

 a. il metro di misura che permette di diagnosticare lo scarto del comportamento rispetto alla norma deve essere rapportato al tipo di proprietà emergente del linguaggio che si sta cercando di individuare;

b. per alcune di queste proprietà l'eziologia patologica può essere rintracciata nelle strutture organiche (genetiche, sensoriali, cerebrali) che hanno costituito la base funzionale degli stadi precedenti, indipendentemente, quindi, dagli usi ccologici, sociali e puramente rappresentazionali del linguaggio; c. tali usi, al contrario, dovranno costituire la base antropoanalitica di riferimento laddove i fenomeni patologici (psicopatologie, sociopatologie, etopatologie) non possono essere riconducibili ai livelli inferiori dell'organizzazione biologica; d. in qualsiasi caso la valutazione degli eventi patologici va sempre commisurata

possono essere riconducibili al livelli inferiori dell'organizzazione biologica; d. in qualsiasi caso la valutazione degli eventi patologici va sempre commisurata al soggetto antropico colpito che tende sempre a ricostruire uno stadio di equilibrio funzionale ed esistenziale capace di perpetuare la propria sopravvivenza eto-cognitiva, salvaguardando l'ontologia linguistica della persona.

2. CLASSIFICAZIONE DELLE PATOLOGIE DEL LINGUAGGIO

Possiamo definire genericamente le patologie del linguaggio come l'insieme dei disturbi che alterano o impediscono, totalmente o parzialmente, le attività di produzione e/o comprensione dei discorsi sia orali sia scritti. Tali disturbi sono provocati dal malfunzionamento dei sistemi percettivi, motori o cognitivi, che possono essere alterati sia a livello periferico sia centrale. In alcuni casi l'attribuzione delle cause e la meccanica degli impedimenti funzionali, appaiono facilmente individuabili; in altri casi non solo l'eziologia ma anche la fenomenologia dei disturbi e la stessa diagnosi possono risultare difficilmente comprensibili. Nellasordità profonda, che è una tipica patologia di origine percettivo-ensoriale, ad esempio, è evidente che il deficit linguistico deriva dalla compromissione del Papparato uditivo in fase afferente e dalla conseguente impossibilità di esercitare, in fase efferente, le funzioni articolatorie che non sono state neppure attivate ne corso del processo ontogenetico dello sviluppo linguistico (cfr. supra, §1.1): così i sordi profondi, pur corredati di apparati fonatori intatti, risultano muti (se non sottoposti a riabilitazione).

Quando, invece, la comprensione o la produzione del linguaggio si mostrano deficitari in assenza di danni organici agli apparati periferici, l'indagine diagnostica viene orientata, in prima istanza, verso l'esplorazione del cervello (sulle metodologie e le tecniche utilizzate cfr. la scheda in Appendice). Il sospetto eziologico è che il danno derivi da un'interruzione dei circuiti neurali preposti più che a quelle che sino a qualche decennio addietro venivano chiamate le aree del linguaggio (area di Broca e area di Wernicke, connesse dal fascicolo arcuato) al fitto sistema dei circuiti corticali e subcorticali che presiedono al funzionamento complessivo del linguaggio. Sull'organizzazione di questo sistema si confrontano oggi due ipotesi principali: una fondata sull'articolazione in subsistemi funzionali di implementazione, mediazione e concettualizzazione [Dronkers, Pinker e Damasio 2003]: l'altra su una stratificazione evolutiva di aree cronologicamente sovrapposte e diversamente funzionalizzate [Lieberman 2000: 2003]. Entrambe le ipotesi sono orientate alla comprensione dei disturbi riconducibili alla famiglia delle afasie (incluse le agnosie, le alessie, l'agrafia e la disgrafia, e tutte le forme di aprassia).

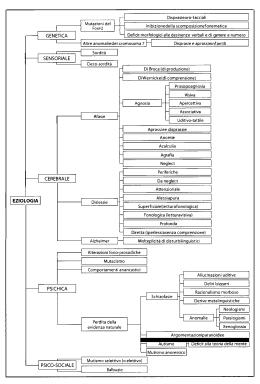


fig.6.7. Classificazione eziologica delle patologie dellinguaggio.

Queste ultime, tuttavia, non esauriscono il panorama delle patologie linguistiche si possono manifestare disturbi del linguaggio anche a causa di una degenerazione diffusa dei tessuti cerebrali (le diverse forme di demenza riunite sotto il nome di «sindrome di Alzheimer»), da imbizioni di natura psicologica del ritmo della parola (labluzio) o della motivazione a parlare (mutismo selettivo), da deficii del controllo visuospaziale (dislessie) o da altre patologie connesse al controllo motorio (parkinsonismo, sindrome di Tourette ecc.).

Di recente sono state individuate anche patologie del linguaggio di natura genetica (mutazione del gene FOXPZ, duplicazione anomala del cromosoma 7, lo stesso implicato nella sindrome di Williams) che impediscono un controllo fine del sistema motorio buccofacciale (disprassie orofacciali).

Quando, infine, si riscontra un disturbo o una forte anomalia linguistica dei soggetti osservati senza poterlo attribuire ad alcuna causa di tipo sensoriale, cerebrale o, più genericamente, organica, si entra nell'ambito delle psicopatologie del linguaggio, cioè delle fenomenologie linguistiche mostrate in diverse malattie mentali. Su alcune di queste patologie (schizofrenia e altre forme di psicosi, nervorsi annacastiche, autismo, sindrome di Asperger ecc.), su cui i pareri sono discordi, torneremo nell'ultima parte del capitolo. Nello schema della figura 6.7 si può wedere un quadro sintetico delle principali eziologie sottese alle patologie del lineuageio.

In linea generale la maggior parte delle patologie linguistiche comporta un'alterazione delle procedure cognitive e, analogamente, la maggior parte dei deficit cognitivisi riflette nei comportamenti linguistici. Uno degli scopi principali delle scienze cognitive del linguaggio è quello di evidenziare la natura delle connessioni tra i disturbi linguistici e le difficoltà manifestate nei comportamenti cognitivi. Non potendo affrontare, per ovvi motivi di spazio, tutto l'insieme delle manifestazioni patologiche, tenteremo di descrivere almeno i principali domini in cui si esplicano tali connessioni.

2.1. Patologie genetiche

Il dominio genetico è definito dalle anomalie linguistiche che si manifestano con l'interruzione dei normali stadi di apprendimento e uso del linguaggio in bambini che non sembrano soffrire né di turbe dell'udito, né di difetti all'apparato fonatorio, né mostrano comportamenti associati di tipo autistico o di ritardo mentale.

Questi disturbi, primariamente di natura articolatoria in relazione alla coordinazione dei movimenti orofacciali, a volte comportano anche difficoltà di tipo fonetico e moftologico. I soggetti evidenziano gravi difficoltà nella pronuncia, invertono i fonemi, semplificano la dizione omettendo prefissi e desinenze, diminuiscono il numero delle sillabe «sincretizzando» il suono, non riescono a leggere ne a fare los pedering delle parole. Questi disturbi permangono in erà adulta.

L'indagine su questi soggetti ha coinvolto dapprima le metodologie della biologia molecolare utilizzate in malattie come la fibrosi cistica, la distrofia muscolare e la

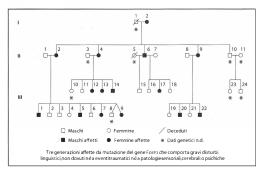


fig.6.8. PedigreedellaK.E. Family.

Fonte: Lai, Fisher e Hurst (2001), adattato.

Corea di Huntington, senza ottenere tuttavia dei risultati apprezzabili. L'anomalia genetica segue, infatti, dei pattern ereditari complessi che sono emersi solo grazie ad un caso molto raro, quello della K.E. Family [Hurst et al. 1990] studiata per tre generazioni consecutive (vedi cap. II, § 1.2).

In tale famiglia ben 15 soggetti soffrivano delle turbe linguistiche sopra descritte, evidenziando uno schema di trasmissione ereditaria molto preciso (fig. 6.8). Secondo Cecilia Lai et al. [2001] il disordine linguistico, che si manifesta sia nei maschi sia nelle femmine, viene trasmesso in maniera regolare a causa della mutazione di un allele dominante su un singolo gene – denominato FOXP2 – locato nel cromosoma autosomale 7q31 [cfr. anche Fisher 2005]. Ulteriori studi su questo frammento di DNa [Lai et al. 2000, Newbury et al. 2002; cfr., per l'interpretazione di questo dibattito, Falzone 2004a; 2004b] hanno portio a ribattezzare la locazione della mutazione come SPCHI (speech one), collegando il suo ruolo anche ad altri casi di disturbi del linguaggio, compresi alcuni fenomeni presenti in soggetti autistici. Gli studi condotti col metodo della risonanza magnetica in membri della K.E. Family affetti e non da disturbi linguistici hanno evidenziato precisi riscontri neurosciscittici (alla patologia:

Nella figura 6.9 vengono ritratte le aree attivate durante le prove linguistiche di produzione e ripetizione di parole cui sono stati sottoposti i pazienti (quelli sani sono nella fila superiore del quadrante a, quelli affetti in quella inferiore e nel quadrante b).

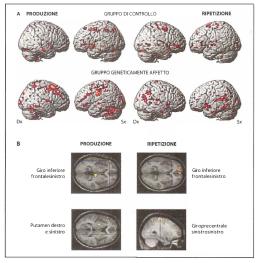


fig.6.9. Evidenze neuroscientifiche dei disturbid el Faxe2.
Fonte: Le George da (2003)

Come si può notare i gruppi non affetti mostrano una distribuzione tipica, dominante a sinistra, che coinvolge l'area di Broca nei compiti di generazione e una distribuzione più bilaterale nei compiti di ripetizione. I membri affetti, invece, mostrano un'estensiva attivazione bilaterale in entrambe le prove e una significativa sottoattivazione dell'area di Broca a sinistra e del suo omologo controlaterale a destra. Queste ricerche – secondo gli autori – suggeriscono che il FOXP2 sia un gene critico coinvolto nello sviluppo del sistema neurale che regola il lineugazio.

A smorzare gli entusiasmi per la «scoperta» del gene del linguaggio sono intervenuti i numerosi studi dell'etologia e della genetica evoluzionista. In particolare Enard et al. [2002] hanno dimostrato la presenza del tratto anche in altre specie. tra cui gli scimpanzé, gli oranghi e i topi (vedi un'ampia descrizione dello studio nel cap. II. § 1.2).

Da un punto di vista evolutivo, quindi, il FOXP2 è un tratto antichissimo. Esso ha subito, tuttavia, almeno tre sostanziali modificazioni coincidenti con le svolte della linea evolutiva che porta dai primi mammiferi all'uomo. Come abbiamo visto (cap. II. § 1.2). l'ultima mutazione di questo genere sembra fissarsi attorno al periodo in cui Lieberman [1975] ha individuato la comparsa del tratto vocale sopralaringeo (100-200,000 anni fa).

Un'interpretazione coerente con questi dati viene anche dagli studi ontogenetici. Marcus e Fisher [2003] hanno rilevato come il FOXP2 - che, in generale, svolgendo un ruolo di «trascrittore», funziona come regolatore della differenziazione funzionale delle cellule- entra in gioco soprattutto nell'embriogenesi dei tessuti polmonari, intestinali, cardiaci e, soprattutto, cerebrali (gangli basali, cfr. infra, § 2.2.2-2.2.3).

Nel caso della K.E. Family i disturbi (come descritto in dettaglio nel cap. II. § 1.2), sono circoscritti al cervello e non agli altri organi perché, disponendo di due copie dello stesso gene, una ereditata dalla madre, l'altra dal padre, nei casi di un danno genetico, si determina «il dimezzamento dell'usuale dosaggio della proteina normale FOXP2. Questa dose può essere adeguata per il normale sviluppo dei polmoni, dell'intestino e del cuore, ma insufficiente per il cervello. La mutazione presente nel FOXP2 dei membri affetti della K.E. Family inattiva la normale funzione di regolatore della proteina, determinando così un'alterazione della sequenza proteica nelle cellule cerebrali, con conseguenze nei meccanismi cerebrali che regolano la selezione dei movimenti articolatori del linguaggio» [Falzone 2004a, 73].

Se l'ipotesi evolutiva formulata da Enard et al. [2002], e da altri studiosi [Zhang, Webb e Podlaha 2002], fosse corretta, si potrebbe affermare che la funzione linguistica del FOXP2 si aggiunge, in qualità di agente specifico del controllo articolatorio dei movimenti f'ini connessi all'esercizio linguistico umano, al già sperimentato repertorio di controllo e differenziazione dell'embriogenesi cellulare in tutte le specie comuni al ceppo originario.

In questa direzione vanno anche gli studi più recenti sulla storia evolutiva dei gangli basali e della loro progressiva specializzazione cognitiva funzionale nelle diverse specie animali, e negli uccelli in particolare [Scharff e Haesler 2005; Doupe et al. 2005].

Dal punto di vista delle facoltà cognitive, quindi, la scoperta delle patologie linguistiche di origine genetica svolge un ruolo di primaria importanza. Seppure, infatti, questi disturbi non comportino deficit prestazionali di tipo direttamente intellettivo, indicano inequivocabilmente che la predisposizione all'articolazione verbale- fondamento materiale di ogni possibile sintassi simbolica storicamente determinatasi e di qualsiasi conseguente crescita sinergica delle facoltà mentali si pone alla base della rivoluzione tecnobiologica specie-specifica in senso stretto dell'Homo sapiens.

2.2. Patologie cerebrali: i modelli teorici dell'afasia

Quello che si vede nella figura 6.10 costituisce il modello neurale del funzionamento del linguaggio affermatosi sino alla metà del ventesimo secolo e passato alla storia come modello Wernicke-Geschwind. Secondo questo modello l'area di Broca, localizzata nel giro frontale anteriore dell'emisfero sinistro del cervello, costituirebbe il centro motorio dell'articolazione vocale, mentre l'area di Wernicke sarebbe responsabile del procuessamento della forma acustica delle produzioni verbali. Quindi il centro della produzione e quello della comprensione del linguaggio, connessi dal fascicolo arcuato, un canale di fibre nervose che, secondo il modello, trasporta unidirezionalmente i segnali dall'area di Wernicke a quella di Broca. Su questa base neuroanatomica le diverse tipologie di afasia venivano elssificate come:

- A/ssia diBroac, caratterizzata da difficoltà articolatorie, alterazione delle capacità di ripetizione, lentezza e scarsezza di eloquio, tendenza all'appiattimento prosodico, forme di agrammatismo, stereotipia, talvolta difficoltà di scrittura. Ne scaturisce, ovviamente, una riduzione quantitativa del lessico, soprattutto quello grammaticale, con scomparsa di articoli, proposizioni, desinenze e terminazioni di genere e numero, mentre il lessico nominale e verbale è tendenzialmente conservato, ma con alcune importanti precisazioni che vedremo in seguito. Secondo il modello standard l'afasico di Broca conserverebbe la comprensione. È sempre presente la cosciraza del proprio stato di difficoltà. L'area colpita sarebbe i giro frontale anteriore sinistro e le zone immediatamente, circostanti (Arce 44 e 45 di Braadmante).
- Afaisi di Wernicke, che si manifesta con cloquio fluente, prosodia intatta, se non accentuata, presenza di parafasie fonemiche, con inversione dei suoni. La semantica sembra spesso alterata: i discorsi degli afasici di Wernicke presentano, da questo punto di vista, analogie con quelli dei soggetti schizofrenici che venemo in seguitor, produzione di paralogismie neologismi, verbigerazione che porta a volte alla cosidetta «insalata di parole», consequenzialità logica ridotta al minimo. Sempre secondo il modello standar la comprensione è compromessa ei pazienti, spesso, non si rendono conto delle loro alterazioni. La parte colpita andrebbe dal giro angolare posteriore sinistro sino al giro temporale medio (22, 42 d. delle agene di Broadfango).
- Afasia di conduzione, anch'essa è fluente ma con qualche difficoltà articolatoria, interruzioni frequenti, esitazioni, correzioni e ritorni indietro, produzioni parafasiche, incapacità di ripetere e nominare illustrazioni o oggetti. L'impressione generale è quella di «una disorganizzazione selettiva della seconda articolazione del linguaggio» (Lecours e Lhermitte 1979, 129). La comprensione sembra abbastanza intatta. Il modello standard individua nel fasciolo arcuato il danno, ma le lesioni registrate riguardano più il giro temporale superiore e il lobo parietale inferiore e zone limittofe (39, 40, 41, 42 delle aree di Broadmann), a volte sovrapponendosi con l'area di Wernicke.
- Afasia globale, si presenta con perdita pressoché totale della parola e della scrittura, o con la conservazione di qualche articolazione in forma seriale (con-

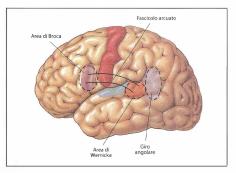


fig.6.10. Modello Wernicke-Geschwind delcircuitocerebraledellinguaggio.

tare, elencare i mesi dell'anno ecc.) o cantata. Possono sopravvivere stereotipie verbali. La comprensione è fortemente compromessa. Le lesioni sono massive e si possono presentare in tutte le tre precedenti aree, spingendosi sino all'insula. Più che in tutti gli altri casi, si manifestano anche paresi facciali e degli arti.

Negli ultimi decenni la ricerca neuroanatomica ha portato alla luce l'importanza delle lesioni trans- e subcorticali. In particolare Ph. Lieberman [2003, 265] ha notato che i danni alle aree di Broca e di Wernicke, quando non coinvolgono la materia sottostante, e quindi, la subcorteccia cerebrale, risultano trattabili permettendo la riabilitazione dei soggetti, mentre lo stato di afasia resta permanente nei soggetti che subiscono una lesione intraemisferica che si estende nella materia grigia al di sotto delle aree del linguaggio [Stuss e Benson 1986, 161; Damasio 1991; Lieberman 2000, 831.

Le lesioni subcorticali metterebbero in luce, secondo Lieberman, il ruolo di componenti evolutive più antiche della neuroanatomia cerebrale nel circuito del linguaggio. Si tratta di quelle strutture appartenenti al paleocervello chiamati gangli basali che costituiscono un sistema primitivo del controllo dell'informazione motoria e dell'attenzione (illustrato nella fig. 6.11). Sono composti di materia grigia analoga a quella che si riscontra negli strati superiori degli emisferi cerebrali e sono classificati tra i regolatori biochimici del cervello mediante la produzione di noradrenalina.

Secondo l'ipotesi di Lieberman essi costituirebbero la base fisio-anatomica evolutiva su cui si è potuto instanziare il linguaggio attraverso la modificazione funzionale e la specializzazione di altre parti del cervello (le aree corticali) prima deputate a compiti diversi, seguendo uno schema tipico della selezione

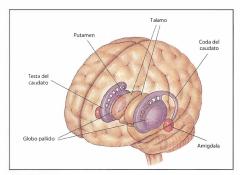


fig. 6.11. Ganqlibasali.

darwiniana che ha portato, ad esempio, alla formazione delle ossa auricolari dei mammiferi a partire dalle mandibole dei rettili [Mayr 1982]. I gangli basali si sarebbero specializzati nel controllo dell'esecuzione rapida e precisa di azioni abituali, e, nel caso del linguaggio, nel controllo motorio orofacciale fine, richiesto dal sistema cognitivo per esercitare la facoltà articolatoria attraverso di tratto vocale sopralaringeo che, secondo Lieberman [1975; 1991], sarebbe un contrassegno specie-specifico dell'Homo sapiens. Secondo MacNeilage e Davis [2001] lo stesso d'fame sillabico» (alternanza di consonanti e vocali), che caratterizza il protocollo di codifica del linguaggio parlato umano, deriverebbe dal sistema di controllo motorio facciale legato alla masticazione del cibo e ai movimenti mandibolari, che originariamente erano assegnati alle aree cerebrali sub-corticali (gangli basali).

Un'interpretazione coerente con questa ipotesi proviene dai dati genetici sul FOXP2 che abbiamo già considerato (cfr. supra, § 2.1). Il FOXP2 interviene, infatti, come regolatore della differenziazione funzionale delle cellule cerebrali nella fase embriogenetica negli uomini e negli uccelli [Scharffe Haesler 2005], proprio in concomitanza con la formazione dei gangli basali nei feti. Le patologie genetiche del linguaggio – che, come abbiamo visto, colpiscono proprio la capacità di controllare i movimenti fini orofacciali – inibirebbero il corretto svilupoo embrionale dei gangli basali.

A parte, tuttavia, le questioni connesse con la ricostruzione evolutiva e la descrizione del riassemblaggio delle strutture cerebrali, ancora in piena fase esplorativa, il problema del ruolo dei gangli basali nel linguaggio presenta un interesse speciale poiché. se fosse corretta l'ipotesi di Lieberman, potrebbe portare ad una revisione completa della teoria dell'afasia. Non basterebbe, cioè, semplicemente rivisitare e perfezionare, come è successo negli ultimi decenni, il modello Wernicke-Geschwind, in quanto presupposto di tale modello è il ruolo del controllo articolatorio e della componente grammaticale dell'area di Broca.

2.2.1. Semantica e sintassi nell'afasia

Gli studi compiuti sino agli anni Ottanta sembravano aver raggiunto su questo punto un risultato certo. Nel 1983 Caramazza e Berndt definivano l'afasia di Broca come «un danno centrale della componente sintattica del sistema di processazione del linguaggio che si verifica concomitantemente ad un disturbo indipendente dell'articolazione» [Caramazza e Berndt 1983, 114]. Questa definizione, che, in fondo non si scostava molto da quella «iconoclasta» di Pierre Marie [1922] – secondo cui l'afasia di Broca non era altro che l'afasia di Wernicke «complicata» dall'anatrìa - si basava sull'accertamento sperimentale di alcuni caratteristici deficit presentati dai pazienti che ne erano affetti.

In primo luogo gli afasici di Broca mostravano evidenti segni di disartrìa, con manifesta incapacità di pronunziare specifici fonemi e intere parole. In secondo luogo sembrava che agli afasici di Broca risultasse molto difficile comprendere e articolare la maggior parte delle function words [Caramazza, Zurif e Gardner 1978; Goodenough, Zurif e Weintraub 1977; Heilman e Scholes 1976]. Questo deficit sembrava estendersi non solo alle classi grammaticali chiuse (articoli, congiunzioni, preposizioni, pronomi ecc.), ma anche alle terminazioni con valore grammaticale (desinenze, prefissi, suffissi e infissi, marcatori di genere e numero ecc.). Per questo motivo gli afasici di Broca venivano spesso catalogati come pazienti «agrammatici» dal caratteristico «stile telegrafico». Infine negli afasici di Broca la comprensione sembrava compromessa anche in relazione all'ordine delle parole: ciò che sembrava sfuggirgli era l'intero schema di percezione della frase. Quando la successione era lineare (ad es., in italiano, soggetto-verbo-complemento) risultava più facile per loro ripristinare il senso. Quando, al contrario, la frase si complicava, perché qualche elemento dell'enunciato era stato spostato in una posizione non canonica, il numero delle incomprensioni legato alla sintassi sembrava aumentare [Caramazza e Berndt 1983, 112 ss.].

Il fatto che, nonostante questa grave incapacità recettiva, gli afasici motori sembravano riuscire, nella maggior parte di volte, a comprendere il significato complessivo degli enunciati, veniva attribuito alla loro capacità di ricostruire la struttura profonda a partire dai pochi elementi semantici «aperti» (content words) che venivano localizzati all'interno del testo e utilizzati come «chiavi semantiche» decisive [ihidem. 113]. Una riprova dell'uso di perni semantici «certi» per ripristinare il senso oscurato dalla incomprensione dei morfemi grammaticali e dell'ordine delle parole, l'hanno fornita, negli anni Settanta, gli esperimenti di Caramazza e Zurif [1976] i quali hanno rilevato che gli afasici motori riescono a capire solo quando le distinzioni semantiche nella frase sono molto nette, mentre falliscono di fronte a costrutti semantici improbabili o sottili.

Più in generale si può dire, in base a questa prima fase degli studi, che la mancanza degli elementi della comprensione che già sono contenuti nella componente sintattica impediscono all'afasico di Broca di mettere a fuoco le intuizioni fornite dallo scheletro referenziale ancora intatto. Si ha così una comprensione generica, flou, che si rivela ancora efficace quando l'enunciato è semplice, ma che diviene inadeguata quando il discorso i complessifica, sia sintatticamente sia, di conseguenza, semanticamento.

L'idea che gli afasici di Broca siano soggetti a un deficit sintattico indipendente dalle capacità di comprensione semantica e autonomo rispetto ai disturbi articolatori, sembra, quindi, messa in discussione già alla fine degli anni Ottanta. Il dibattito si chiude, su questo punto, con la sconfitta dell'idea che «l'afasia di Broca rappresenta un caso "puro" in cui è danneggiata una sola componente del sistema mentre le altre sono conservate intatte» idea da cui scaturisce, a sua volta, la convinzione «che sia possibile "localizzare" la sintassi nel cervello» (Caramazza e Berndt 1983, 119-120). In particolare che la componente sintattica sia localizzata esclusivamente nell'area di Broca, come hanno sostenuto Mesulam [1990] e Damasio e Damasio [1992], sarà smentito o, comunque, meglio articolato dai dati della ricerca neuroanato-mica contemporanea.

Con glistudi degli ultimi venti anni il dibartito sull'afasia di Broca ha fatto rilevare un salto qualitativo dovuto all'estendersi delle metodologie integrate delle scienze cognitive. In particolare l'uso massiccio delle nuove tecnologie del brain-imaging e dei potenziali evocati si è potuto positivamente coniugare con l'osservazione empirica dei comportamenti linguistici nella neuropsicologia sperimentale e con lo studio dei modelli sintattici generativo-trasformazionali. Queste ricerche hanno rilevato nuove interconnessioni tra fatti articolatori, morfologici, sintattici e semantico-lessicali che hanno portato a nuove prospettive.

Un dato di partenza che trova concordi la maggioranza di questi studi riguarda l'osservazione secondo cui gli afasici di Broca trovano maggiore difficoltà a produrre verbi rispetto ai nomi.

Non si tratta di un'osservazione nuova, già Bergson, sulla scorta delle osservazioni di Ribot, ne aveva sottolineato l'importanza teorica in Materia e memoria [1896, 234-235]. Gli studi sperimentali contemporanei ne hanno, tuttavia, precisato i contorni in maniera accurata. Questo fenomeno si presenta, infatti, già nei test su singoli items (promunica di parole in risposta al illustrazioni, o «picture naming», Miccil et al. [1988]; Zingeser e Berndt [1990].

Secondo Berndt et al. [2002] già a questo livello la differenza nella difficoltà di produrre verbi rispetto a nomi è condizionata sia da fatti semantici (tipo di parole e verbi connessi con concetti astratti o concretti e più o meno «immaginabli» sia da fatti grammaticali (incapacità di produrre determinate categorie di singole parole nel completamento di frasi semplici).

I dati si mostrano particolarmente netti quando si analizzano pazienti che mostrano chiari segni di agrammatismo con sottoutilizzazione di classi chiuse e una tendenza a semplificare le strutture frastali [Saffran, Berndt e Schwartz 1989; Jonkers 1998; Kim e Thompson 2000; Luzzatti et al. 2002] (una quantificazione statistica della diminuzione di classi chiuse in Pennisi [1998, con bibliografia]). La complessità generativa dei verbi non dovrebbe, tuttavia, sorprendere. Rowan et al. [2004], applicando una tecnica combinata di risonanza magnetica (fMRI) e potenziali evocati (ERPs) in soggetti normali (per una spiegazione in dettaglio di queste tecniche cfr. la scheda in Appendice), hanno rilevato la maggiore complessità neurale sottostante al processo di produzione dei verbi.

Tale complessità si sostanzia in una maggiore lateralizzazione nei compiti di generazione verbale rispetto all'ascolto passivo, alla ripetizione di parole e di non-parole, come si può evincere dalla figura 6.12.

La produzione di verbi, evidentemente, richiede un a specializzazione emisferica maggiore, coinvolgendo sia l'elaborazione degli stati recettivi (fonico-semantico) sia quelli produttivi (programmi articolatori e motori). Altre ricerche hanno evidenziato che questo fenomeno si ripete anche nel caso di produzione silente di verbi [Wartburton et al. 1996]. Generare verbi, insomma, mette in moto una quantità difficilmente circoscrivibile di sottoprocessi neurali che indicano la complessità funzionale del costrutto verbale.

Per tentare di isolare le difficoltà di tipo semantico da quelle di tipo sintattico sono state adottate, nel caso degli afasici, strategie differenziali. A un primo esame di natura lessicale si è osservato, infatti, che non tutti i verbi presentano la stessa percentuale di difficoltà. In particolare i cosiddetti «verbi leggeri», quelli. cioè che dipendono più strettamente dalla posizione sintattica che dal contenuto semantico (andare, fare, prendere ecc.), risultano più ostici da produrre che non i «verbi pesanti», legati quasi esclusivamente al contenuto lessicale [Gordon e Dell 2003: Barde Schwartz e Boronat 20061

Risultati analoghi hanno sortito i test impostati su una classificazione dei verbi in base alla molteplicità degli argomenti retti; meno argomenti reggono i verbi. maggiori sono le difficoltà degli afasici a generarli [Jonkers e Bastiaanse 1996; Thompson et al. 1997; Jonkers 2000; Kemmerer e Tranel 2000; Kiss 2000; Thompson 2003: Kim e Thompson 2000: 2004].

Più in generale, adottando il criterio della rappresentazione composizionale di Jackendoff [1990] per determinare la complessità concettuale dei verbi, è emerso che più specifico è il ventaglio delle caratteristiche semantiche di un verbo minore è la difficoltà di produrlo per un afasico di Broca. Il soggetto tende sistematicamente a sottorappresentare i verbi passpartout (abolendo, in sostanza, tutte le possibilità di flessione semantica anche in quelli di alta frequenza come fare, and are, prendere ecc.) sino a ridurli ad un solo componente lessicale, mentre è in grado di produrre più facilmente verbi semanticamente circoscritti anche se meno frequenti o addirittura rari. Kim e Thompson [2004] – che hanno confrontato pazienti con sindrome di Alzheimer e afasici di Broca agrammatici sulla base di test frasali complessi – si spingono ad affermare che quello della sottorappresentazione dei verbi grammaticali rispetto a quellilessicali costituisce il deficit-tipo dell'afasia agrammatica di Broca.

Questo risultato apparentemente anomalo che, in sostanza, fa apparire le prestazioni dell'afasico di Broca più scadenti con i verbi «facili» che con quelli «difficili», sembra rimontare alla complessità intrinseca del costrutto verbale che già abbiamo visto anche neurofisiologicamente evidenziato da Rowan et al.

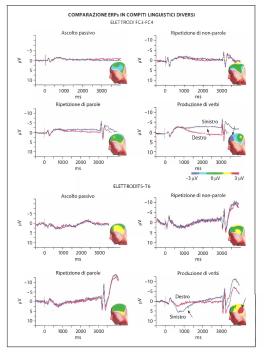


fig.6-12. MediatracciatiERPs insoggettinormali in 4 testlinguistici
Fante: ROWAN et al. [2004], adattato.

[2004]. In particolare, come ci dimostrano i casi degli afasici agrammatici analizzati in letteratura, questo costrutto tende a mettere a dura prova la possibilità di separare i fatti semantico-lessicali da quelli sintattici.

Luzzatti et al. [2002] hanno al proposito fatto rilevare come i pazienti agrammatici contraddicano la regola generale secondo cui la difficoltà generativa dei verbi aumenti in maniera proporzionale con la complessificazione della struttura sintattica della frase. Lo studio compara il grado di indebolimento nella capacità di produrre frasi con tipi di verbi ergativi (la casa crolla-la casa è crollata). transitivi (la ragazza taglia la torta-la ragazza ha tagliato la torta), e intransitivi (la ragazza dorme-la ragazza ha dormito). Analogamente al trend mostrato dai soggetti di controllo (ma. ovviamente, con valori molto più critici) le difficoltà principali tra gli afasici (sia di Broca sia di Wernicke) si palesano nell'uso dei verbi ergativi. L'ipotesi degli autori è che, sebbene questi ultimi, analogamente agli intransitivi. non puntino a un oggetto diretto, il loro soggetto non è l'agente ma è il tema dell'azione sottesa. Ciò sarebbe marcato, nella struttura superficiale, dall'uso dello stesso ausiliare (essere) dei costrutti passivi (la torta è tagliata dalla ragazza), che richiede, per essere disambiguato, di un'ulteriore trasformazione semantica nella struttura profonda della frase. Il fatto sorprendente è, tuttavia. che gli afasici agrammatici, contrariamente a tutti gli altri soggetti sottoposti al test, riportano i punteggi più bassi nella produzione di verbi transitivi [cfr. anche De Bleser 2000 L confermando l'anomalia secondo cui essi sembrerebbero sopportare meglio i costrutti più complessi che quelli più semplici.

Per tentare di spiegare questo mistero Bastiaanse e Zonneveld [2004] hanno ulteriormente approfondito il trattamento dei verbi transitivi, sottoponendo ad afasici di Broca e di Wernicke semplici frasi contenenti verbi con transitività alternata. come l'uomo suona la campana-la campana suona. I risultati hanno chiaramente indicato che mentre per gli afasici di Wernicke non c'è sostanziale differenza. per gli afasici di Broca i costrutti non-accusativi dei verbi transitivi (la campana suona) mostrano difficoltà nettamente maggiori; le frasi con verbi che hanno il tema in posizione di soggetto sono più difficili da produrre che le frasi con lo stesso verbo in posizione di agente. Ciò indicherebbe che il danneggiamento dell'area di Broca non impedisce la sintassi in generale ma solo una parte della sua componente trasformazionale: l'impossibilità di riportare il soggetto nella sua posizione reggente rispetto al verbo causa la cecità ricostruttiva complessiva e. quindi, l'impossibilità di pronunciare il verbo.

Una posizione radicale che, su queste basi, ridisegna completamente il ruolo dell'area di Broca, è espressa nei lavori di Grodzinsky [2000; 2003; 2006; Grodzinsky e Amunts 2006). Secondo la sua ipotesi l'area di Broca non giocherebbe alcun ruolo nelle funzioni articolatorie (probabilmente, come vedremo in seguito, affidate a meccanismi evolutivamente più arcaici del cervello). I disturbi agrammatici presentati da questi pazienti, inoltre, si trovano sempre, come abbiamo visto, in una commistione inestricabile con apparenti disturbi semantici. La corteccia cerebrale superiore, nel suo insieme, elabora complessivamente la struttura sintattico-semantica astratta delle frasi nell'emisfero sinistro, ma i diversi sottocircuiti non si sovrappongono funzionalmente. L'area di Broca, in questo contesto neurale di ordine superiore, sembrerebbe – secondo Grodzinsky – specializzata nella conservazione delle **tracce** dei movimenti trasformazionali.

Una traccia in grammatica generativa è l'entità concettuale residua nella struttura profonda di una frase creata da uno spostamento di un elemento, dotato di determinate proprietà, in un'altra posizione rispetto a quella di origine. Essa occupa sempre una posizione tematica (cioè la posizione di un argomento appropriato) ed è costantemente coindicizzata con le proprietà originarie, in modo tale che le possa conservare nella nuova struttura sugerendo il tipo di modificazioni che dovrà assumere la struttura superficiale risultante per coincidere con la struttura profonda nello stato finale. Ad se. nella trasformazione di:

Paolo ama Maria in Maria è amata da Paolo

si viene a creare una traccia dell'elemento Maria che contiene la proprietà [essere oggetto dell'amore di Paolo] tale che Maria nella nuova posizione di testa, per realizzare la proprietà che conserva [essere oggetto dell'amore di Paolo], richiede una trasformazione del verbo nella forma passiva è amata e un cambiamento del ruolo di agente al soggetto veicolato dalla preposizione da. In questo modo Paolo ama Maria e Maria è amata da Paolo risulteranno coincidenti ed entrambi compatibili con una medesima struttura profonda. Si tratta, come si può facilmente capire, di un meccanismo computazionale semplice nella sintassi della struttura algoritmica, ma molto complesso nella sua componente contenutistica, che non può non essere di natura semantica.

Secondo Grodzinsky [2006] nell'afasia di Broca le tracce di questi movimenti sono invisibili al sistema sintattico perché cancellate nella rappresentazione del paziente. Questa spiegazione chiarirebbe tutte le confusioni create attorno alle prestazioni dei soggetti colpiti in quest'area, la caratteristica alternanza nell'attribuzione a questa sede dei processi di articolazione motoria e/o di elaborazione grammaticale delle frasi, continuamente contraddetta dall'influsso reciproco tra semantica e sintassi nelle fenomenologie cliniche. Se effettivamente l'area di Broca fosse responsabile solo dello specifico compito di conservare le tracce dei movimenti sintattico-semantici potremmo, inoltre, trovarci davvero di fronte a un'inedita ricostruzione dei processi di funzionamento del linguaggio. Ma restrebbe da capire quali siano, in realtà, le componenti neurali e funzionali che prima venivano attributica quest'area e in quali modi possano interfacciarsi col nuovo ruolo che sembra competerle.

2.3. La stratificazione funzionale del linguaggio

Le molteplici contraddizioni che la ricerca empirica ha evidenziato cercando di rispondere a queste domande, indicano che esse sono, in realiz, mal formulate poiché partono dal presupposto che una lingua sia uno strumento di comunicazione instanziato nella macchina umana attraverso una distribuzione di precisi compiti funzionali a cui corrispondono organi o moduli altrettanto specificamente individuabili. Si tratta di un'idea che rimonta alla frenologia, che si è sviluppata nel corso della neuropsicologia otocentesca e che, infine, ha trovato

una collocazione ideale nel paradigma iniziale delle scienze cognitive. L'ipotesi modulare della mente - di per sé compatibile con l'evoluzione biologica delle strutture viventi (cfr. supra, § 1.3) - si sposa, tuttavia, in questo caso, con la metafora dell'architettura cibernetica. Il motivo principale per cui questa metafora rischia di far naufragare l'approccio cognitivo al linguaggio è che mentre i moduli hardware di ogni architettura cibernetica hanno natura discreta e i flussi di dati e gli algoritmi che regolano il funzionamento delle macchine hanno, per loro stessa definizione, una natura digitale, i segnali linguistici sono, alla fonte, analogici, e non sappiamo affatto se il sistema di processamento cerebrale possa essere definito in termini di entità discrete. L'analisi critica non va, quindi, rivolta al fine correttamente perseguito di comprendere la struttura delle architetture cerebrali e la loro integrazione complessiva in vista della spiegazione di una proprietà emergente come il linguaggio, ma nel considerare questa nuova proprietà come un insieme di capacità complesse e pluristratificate inadatte a essere spiegate da dispositivi semplificati sullo schema già noto di proprietà «declinanti».

Per preservare gli obiettivi generali occorrerebbe, quindi, correggere la rotta operando in una duplice direzione:

a, ridefinire le funzioni linguistiche da spiegare, individuando nuovi filtri di conversione dal flusso analogico dei segnali alla sequenza di operazioni cognitive adeguate alle proprietà emergenti che vogliamo spiegare;

b. ritracciare lo schema delle architetture cerebrali che possono adeguarsi a queste nuove funzioni, tenendo conto delle evidenze empiriche che, perlomeno, ci impediscono di formulare ipotesi logicamente impossibili.

Si tratta, quindi di ricondurre il primato neurofisiologico all'interno delle istanze poste dai sistemi cognitivi reali ed evidenziate dai comportamenti linguistici, che sono l'unico terreno su cui le scienze del linguaggio possono operare. Alcuni esempi possono chiarire questi presupposti teorici.

Il modello classico dell'afasia ha sostenuto il ruolo funzionale svolto dall'area di Broca nella produzione del linguaggio e, quindi, la sua natura di componente articolatorio del sistema. Sappiamo, tuttavia, da un numero rilevante di studi, che i pattern della frequenza formante delle vocali, determinate dalla configurazione del tratto vocale sopralaringeo tipico dell'uomo, risultano intatti negli afasici di Broca [Lieberman 2000, 96]. La codifica della formante si regge sul principio della coarticolazione consistente in una sorta di programma neurofisiologico che anticipa la postura finale degli organi sopralaringei all'inizio della pronuncia di un suono articolarmente composto da più movimenti. I suoni consonantici, ad esempio, si reggono, nel parlato, sull'appoggio alla vocale che segue: nel pronunciare la sillaba [di] o [du] il primo movimento (consonantico) consiste nel collocare la punta della lingua tra i denti anteriori, il secondo (vocalico) nell'aprire le labbra in posizione intermedia per la [i] e chiuderle quasi completamente per la [u]. Questa successione fisica è, in realtà, puramente virtuale, poiché, appunto, il parlante co-articola la vocale assieme alla consonante facendo assumere alle labbra, all'inizio della pronuncia, la posizione finale (semiaperta o semichiusa in questi casi). Questo meccanismo, fondamentale per spiegare il tipo di entità discrete processate dalle architetture cerebrali, sta alla base delle proprietà emergenti di un sistema articolatorio che, assieme alla componente prosodica, presiede alla produzione e comprensione del linguaggio parlato. Esso - come ricorda Lieberman [ibidem] - risulta intatto sia negli afasici di Wernicke sia in quelli di Broca [Katz 1988; Katz, Machetanz e Schonle 1990a; 1990b].

Non c'è dubbio, tuttavia che gli afasici di Broca mostrano evidenti segni di disartrìa. Se questi non sono dovuti, tuttavia, alla capacità di controllo dei meccanismi co-articolatori, possono essere interpretati come deficit di regolazione delle sequenze motorie dipendenti dalle aree corticali?

Il dato linguistico che autorizza a sottoporre all'esame questa ipotesi è la misurazione del Vot (Voice Onset Time): l'intervallo di tempo occorrente tra la chiusura del tratto vocale e l'inizio della vibrazione delle corde vocali [Lisker e Abramson 1964; Ladefoged e Cho 2001]. Ad esempio, in un presunto italiano ideale standard, il VOT di [b] è quasi immediato, mentre il VOT di [p] è di circa 60 ms. Se si produce un suono con un VOT di 30 ms chi ascolta questo suono la prima volta può decidere indifferentemente di considerarlo come sonoro [b] o come sordo [p].

Un afasico di Broca può voler pronunciare una sonora [b][d][g] e invece pronuncia una sorda [p][t][k] ecc. [Blumstein et al. 1980; Baum et al. 1990]. Sebbene il controllo motorio del tratto vocale sopralaringeo (cioè i movimenti di lingua. labbra o posture della laringe) sia intatto, nell'afasico di Broca si riscontra una discrasia tra la sequenza del movimento sopra e sotto il confine laringeo. Nonostante ciò il livello delle opposizioni fonologiche è mantenuto poiché l'alterazione della durata del VOT nelle sillabe è sempre proporzionale: ad esempio dopo una sonora [b][d][g] la durata della vocale è sempre più lunga che dopo una sorda [p][t][k]. Questo rapporto resta costante ed è preservato nella produzione degli afasici di Broca. Ciò significa che il livello fonologico non viene compromesso dalla disartrìa e che quest'ultima può essere dovuta a disturbi del controllo sequenziale motorio che dipende da circuiti neurali subcorticali, come spesso avviene tra i pazienti affetti da patologie neurodegenerative che comportano analoghe alterazione del Vot [Blonder, Pickening e Heath 1995; Ackermann e Hertrich 1997: Pickett et al. 1998: Santens et al. 2003: Murai et al. 20051.

In sintesi, e semplificando molto, si potrebbe dire che quella che chiamiamo «componente articolatoria» del linguaggio è, perlomeno, scomponibile in due sottocomponenti: uno di basso livello che opera – sia in produzione sia in ricezione – sulla materia fonico-acustica pura (analogica), e uno di alto livello che processa dati categorizzati in unità astratte. Un deficit che si manifesta ad uno dei due livelli porta sempre alla compromissione apparente della funzione nel suo complesso, ma non è affatto detto che i due livelli siano entrambi danneggiati. Veniamo così al secondo esempio o, meglio, problema. Se i deficit degli afasici di Broca sono attribuibili ad una concomitante distruzione delle aree sopra e sottostanti, il danno corticale potrebbe spiegare almeno i disturbi sintattici dei pazienti che mostrano agrammatismo e, di conseguenza, potremmo attribuire alle aree corticali superiori l'elaborazione sintattica.

Anche in questo caso, tuttavia, occorre considerare la funzione sintattica come una proprietà emergente non riducibile ad un'unica dimensione (nella fattispecie quella computazionale). Un dispositivo, quindi, fatto di funzioni correlate. alla cui sommità si può collocare l'attività elaborativa della struttura profonda (assieme sintattico-semantica), ma alla cui base dobbiamo ipotizzare, come per l'articolazione motoria, una batteria di circuiti preparatori. Il loro scopo sarebbe, anche in questo caso, di fornire agli organi di elaborazione superiore (ovunque si trovino) un filtro di conversione di segnali continui in segnali discreti, e tutti di diversa natura, integrati, a loro volta, da altre funzioni a vocazione regionale (o, con termine tecnico neuroscientifico, «stazioni di ritrasmissione» [Amaral 2003, 3211.

Una di esse è sicuramente costituita dall'area (o dalle aree) che processano la componente soprasegmentale del parlato: la prosodia.

Secondo il modello classico la comprensione uditiva sarebbe svolta dall'area di Wernicke e zone immediatamente circostanti. Gli afasici di Wernicke, tuttavia. mostrano impedimenti che si riferiscono già ad entità fonematiche: inversione di fonemi o parafasie che alterano il costrutto lessicale, tanto da provocare, come nel caso degli schizofrenici (ma per tutt'altra causa, cfr. infra, § 3.2.1) neologismi o altre forme di variazione semantica. Inoltre questi pazienti non mostrano affatto variazioni tonali. L'eloquio non solo è fluente ma prosodicamente pertinente: anzi riesce a risultare melodicamente «convincente» anche quando è talmente alterato nel senso da risultare incomprensibile. O gli aspetti prosodici non hanno, quindi, parte nella comprensione del linguaggio, o l'area di Wernicke non è un processore specializzato nella comprensione del linguaggio. La manualistica neuroscientifica di qualche decennio addietro tendeva a privilegiare la prima ipotesi, attribuendo alla prosodia più un ruolo aggiuntivo, di «comunicazione delle emozioni», che un ruolo fondativo nella definizione dei pattern sintattici e semantici sottostanti all'interpretazione della frase. Poiché, quindi, pazienti con lesioni emisferiche a destra hanno difficoltà a capire il tono emotivo dei discorsi degli altri, il controllo degli aspetti prosodici veniva ricondotto all'emisfero destro [Dronkers, Pinker e Damasio 2003, 1169].

Gli studi linguistici sulla prosodia, tuttavia, hanno da tempo sottolineato come gli aspetti emozionali costituiscano un dato di secondaria importanza rispetto al ruolo cognitivo che le componenti ritmiche e tonali giocano nella processazione sintattico-semantica del parlato. Alcuni recenti studi neurolinguistici hanno anche ipotizzato l'inconsistenza della distinzione fra prosodia emozionale e prosodia sintattico-semantica [Warren, Grabe e Nolan 1995; Cutler, Dahan e van Donselaar 1997; Steinhauer, Alter e Friederici 1999], Kotz et al. [2003] hanno rafforzato l'ipotesi sostenendo l'intervento di strutture subcorticali anche nella prosodia emozionale, non più ritenuta di esclusiva pertinenza dell'emisfero destro. L'ipotesi – sebbene ancora prematura dal punto di vista della sperimentazione neuroscientifica - sembra attendibile considerato che, a differenza della scrittura che opera su segnali discreti concettualmente analoghi a quelli dei sistemi cibernetici, le unità linguistiche verbali vengono interamente segmentate e riconosciute nel flusso analogico globale del parlato a partire dalla dinamica delle pause e dell'intonazione.

Uno dei maggiori fraintendimenti nella ricostruzione dei processi cognitivi sotto-

stanti al linguaggio è da attribuire proprio a questo mancato riconoscimento della specificità dell'elaborazione del parlato. Eppure le strutture percettive e neurocerebrali dell'organismo umano hanno iniziato a differenziarsi funzionalmente nel corso dell'evoluzione proprio perché cominciavano a elaborare produzioni fonico-acustiche che da grezze si facevano sempre più specializzate attraverso l'induzione di processi di riconoscimento dedicati. Voghera [1992, 124] sottolinea come «la frase non è un costrutto teorico derivato tramite un processo di astrazione dagli enunciati concreti, ma è essa stessa, in quanto realtà cognitiva, che rende possibile l'analisi dell'enunciato». Di fatto l'elaborazione prosodica presiede alla prima sbozzatura del continuum analogico verbale permettendo di individuare l'intelaiatura di frasi dotate di senso anche quando, proprio per le condizioni pragmatiche specifiche del parlato, ci si trova in presenza di enunciati apparentemente incompleti (senza soggetto, senza verbo, virtualmente senza struttura profonda). È assai probabile che esistano circuiti neurali di alto livello capaci di restituire le strutture profonde «assenti» nel parlato attraverso l'elaborazione di elementi completamente astratti e di natura sintattico-semantica: abbiamo, ad es., visto (supra, § 2.2.1) come, secondo Grodzinsky, una di queste potrebbe essere proprio l'area di Broca. Tali circuiti, tuttavia, operano su un materiale grezzo che, secondo diversi studi, potrebbe essere pretrattato e prericonosciuto dalle strutture subcorticali.

Molti di questi studi sono stati compiuti sino agli anni Novanta su pazienti parkinsoniani che sembrano quelli più tipicamente colpiti nella competenza prosodica [Speedie et al. 1990: Blonder, Pickering e Heath 1995: Pell 1996: Ackermann e Hetrich 1997; Pickett et al. 1998; Lloyd 1999]. Archeologicamente individuata già da Gianbattista Vico come patologia dei ritmi del linguaggio («la qual perturbazione affretta l'idee e le voci più tosto che le ritarda» [1744, 508]), sappiamo oggi che il morbo di Parkinson è una patologia neurodegenerativa che produce bradichinesia, rigidità muscolare, tremori e tutti quei sintomi linguistici collegabili alla perdita del controllo motorio: disartrìa, disturbi di fluenza. basso volume di voce, alterazione dei picchi vocali e del Vot [Canter 1965; Darley, Aronson e Brown 1975; Netsell, Daniel e Celesia 1975; Weismer 1984; 1997: Metter 1985: Duffy 1995]. I deficit di produzione presenti nel parlato spontaneo si attenuano quando il paziente ripete, legge, canta le parole ripetute e, soprattutto, quando canta spontaneamente [Kempler e Van Lancker 2002]: cosa che ha fatto ipotizzare che il canto e la parola possano essere regolati da centri diversi [ihidem].

L'aspetto più interessante ai fini di una nuova ricostruzione dei modelli neuroscientifici del linguaggio è che il morbo di Parkinson è sempre connesso con un danno ai gangli basali. In particolare al nucleo sub-talamico (Santens et al. 2003) e ai lobi pallidi (Whelan et al. 2005). Se consideriamo che anche altre patologie diverse tra loro, come la sindrome di Tourette (Jeffries et al. 2002), la balbuzie ed altre disfonie spasmodiche (Ludlow e Loucks 2003) – accomunate da fenomeni disprosodici e di alterazione motoria – sono neurologicamente caratterizzate da danni ai gangli basali, è possibile ipotizzare, con Lieberman, che proprio le componenti più antiche del nostro cervello linguistico siano il luogo di tutti i processi preparatori alle funzioni di alto livello situate nella neocorteccia.

D'altro canto anche i più recenti lavori sulle basi sintattiche e semantiche dei processi cognitivi di soggetti normali basati sulle tecnologie integrate neurofisiologiche (ERPs) e di brain-imaging (fMRI, PET, MEG) confermano questa ipotesi. In una serie di importanti studi dell'équipe del Dipartimento di Neuroscienze cognitive del Max Planck Institute, dopo aver sottoposto i soggetti a test di riconoscimento di frasi sintatticamente e semanticamente scorrette durante una fase di registrazione delle immagini cerebrali, sono stati misurati i potenziali evocati collegati ai diversi loci emisferici, riscontrando un'attività intensiva dei gangli basali soprattutto nelle onde più tardive, come la P600, e anche oltre la soglia dei 1.000 ms [Friederici e Kotz 2003a; 2003b; Frisch et al. 2003; Kotz, Gunter e Wonneberger 2005].

Il **processo di comprensione** è suddiviso da queste tecniche in diverse fasi, corrispondenti agli eventi elettroneurofisiologici che si distribuiscono nel tempo [Friederici e Kotz 2003a; 2003b]. A una fase primaria che segnala il lavoro dell'analisi acustica pura e dell'identificazione dei fonemi - fase di segmentazione fonologica evidenziata con la curva negativa della N100 – seguono altre tre fasi: due caratterizzate dalle curve negative sino alla N400, e una positiva, la P600, detta anche onda tardiva. Nella schematizzazione ricostruttiva di questo processo alle prime due fasi sono attribuite, rispettivamente, la ricostruzione della struttura sintattica e l'assegnazione dei ruoli tematici e delle relazioni semantiche delle entità percepite. Alla terza fase sono attribuiti, infine, i processi integrativi che portano a una rielaborazione e a un'eventuale riparazione delle informazioni complessive [Friederici e Kotz 2003a; 2003b], come nello schema grafico illustrato nella figura 6.13.

Le zone in successione verticale (Fase 0, 1, 2, 3) indicano le scansioni temporali in quattro step; gli ovali racchiudono le aree cerebrali di cui sono state rilevate le attivazioni con procedure di fMRI; infine nei parallelogrammi laterali di destra e sinistra sono riportate le ipotesi di operazioni cognitive svolte durante il test. Come si può osservare i gangli basali intervengono come circuito di integrazione e scambio di informazioni sempre più precisate tra i diversi circuiti corticali superiori e inferiori (sub-corticali).

La conclusione degli autori è che non si può più parlare di due circuiti separati dell'emisfero sinistro dedicati all'elaborazione delle informazioni sintattiche e semantiche, ma di un primo network sintattico-lessicale continuo nel quale si costruiscono e si riempiono di contenuti tematici i suoni e di un secondo network di revisione e integrazione dell'informazione globale di cui sono responsabili i gangli basali. Altri studi ancor più recenti precisano la natura di questa integrazione in direzione del controllo delle strutture prosodico-temporali: «i risultati ottenuti supportano l'evidenza che i gangli basali giocano un ruolo di modulazione nel controllo dei processi sintattici. Più precisamente come parte di un'area premotoria del circuito fronto-striatale che produce la compensazione delle sequenze sintattiche attraverso la stimolazione ritmica esterna» [Kotz, Gunter e Wonneberger 2005, 71].

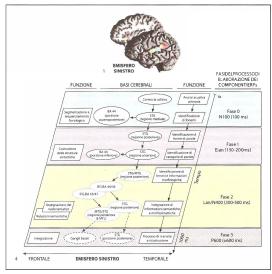
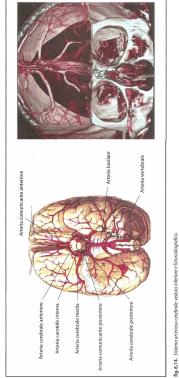
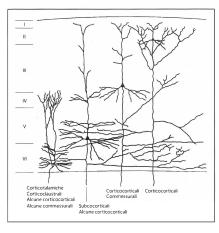



fig. 6.13. Schemadei tracciatiExesdella ricostruzione dei processi sintattico-semantici insoggetti normali. Ennte Esimpsoperal. 1900/alaciattato

2.4. Un nuovo modello neurolinguistico evolutivo

La struttura dei network di controllo che sembra emergere dai dati sull'afasia non appare assimilabile ai modelli gerarchici rappresentati dalle strutture ad albero della maggior parte dei modelli attuali. Al contrario essa può essere, con più verisimiglianza, raffigurata da un circolo continuo o da una rete in cui tutti i nodi svolgono funzioni parzialmente indipendenti ma in perenne modificazione determinata da un'interazione reciproca continua. Insomma un sistema di funzione di funzioni, unificato negli scopi cognitivi ma assolutamente diversificato negli eterogenei interfacciamenti con la realità fissiologica (con relativo trattamento di dati analogici di diversa tipologia).


Ciò che è preliminarmente importante rilevare, per chiarire gli aspetti patologici che possono intervenire in questo complesso circuito di circuiti, è che il danno organico non è praticamente mai circoscriubile con assoluta precisione per almeno due motivi di ordine fisiologico:

a. il sistema arterioso che conduce il sangue al cervello, e la cui occlusione o rottura determina quasi sempre l'evento patologico, segue un tragitto che irrora tutto il tessuto cerebrale (fig. 6.14). La branca centrale dell'arteria media rifornisce subito i gangli basali (Putamen, Globus pallidus, Nucleo caudato) e l'intero corpo mediano, costituito da materia bianca che ha i susi oronfini superiori nella necorreccia e quelli inferiori negli strati subcorticali profondi. Un infarto o un'emorragia che si manifesta in un punto e determina la fine del circuitio può portare alla necrosi di tessuti cerebrali di qualunque profondità ed estensione. Nella quasi totalità dei casi anche quella che sembra una lesione corticale superiore si estende verso eli strati immediatamente sottostanti I Lieberman 2000. 991.

b. la distribuzione dei neuroni nella neocorteccia assume una doppia forma: quella ramificata nei diversi strati (a raggera o a «candelabro»), e quella detta «colonnare» che attraversa gli strati e affonda nelle strutture subcorticali (fig. 6.15). Anche se le attuali tecniche neuroistologiche non sono ancora tanto svi-luppate da permettere una preparazione dei tessuti adatta a fir sialare l'estatt disposizione di queste colonne neuronali, si ritiene che esse costituiscano i moduli elementari di analisi corticale (Amaral 2003, 327) e che siano radicate nel talamo e nelle altre strutture profonde del cervello. Con l'estensione della corteccia nei primati e in particolare nell'uomo, il numero di queste colonne neuronali è molto maggiore che in altre specie, aumentando il substrato delle capacità computazionali [ibidem]. Un evento traumatico o, più facilmente, un infarto o un'emorragia cerebrali possono provocare danni e comportare ripercussioni in una qualunoue parte di queste colonne.

Accanto a queste ragioni di natura fisiologica, il problema della difficile determinabilità dell'esatta sede dei danni cerebrali è complicato dalle contraddittorie evidenze comportamentali che spesso inducono ad attribuire ad un'area una funzione - o ciò che ci sembra essere una funzione ma ne costituisce, in realtà, solo una parte - che poi si rivela attiva anche in molti casi in cui quest'area non ha subìto danni, o, viceversa, manca anche in assenza di danno in quella determinata area. Un buon esempio è costituito dal caso di molti pazienti con danni solo ai gangli basali che manifestano comportamenti analoghi agli afasici di Broca [Alexander, Naeser e Palumbo 1987; Stuss Benson 1986; Lieberman et al. 1992; Kimura 1993: Mega e Alexander 1994) o a quelli di Wernicke [Lieberman 2000. 102: Damasio 1991: Pickett et al. 1998]. Sottolineare la permeabilità degli strati cerebrali e l'indeterminabile opacità delle evidenze comportamentali non impedisce di formulare ipotesi sulla topografia delle funzioni cerebrali. Si tratta, tuttavia, di ridefinire una logica sottostante alla mappatura delle aree non più basata sul primato della localizzazione fisiologica ma su quello della successione funzionale delle operazioni intellettive superiori e della loro stratificazione evolutiva.

Una possibilità che scaturisce da questa ipotesi – suffragata dai dati della ricerca empirica sin qui descritti – sarebbe, quindi, che il circuito neurale

fia. 6.15. I sei stratidellaneocorteccineiltracciato delle proiezioni subcorticali.

Fonte Avasai (2003).

responsabile della disartrìa negli afasici di Broca non dipenderebbe da aree neocorticali ma da un danno subcorticale che coprirebbe i deficit «puri» dei danni alle aree corticali superiori. Questa ipotesi spiegherebbe alcune delle contraddizioni prima evidenziate e concorderebbe o, comunque, sarebbe compatibile con le tesi di Grodzinsky - e implicitamente di Chomsky - di un ruolo funzionalmente più evoluto di quello che si è sinora pensato per l'area di Broca e per tutto il circuito neocorticale (cfr. supra, § 2.2.1). Che d'altrocanto esista un circuito motorio e motorio-articolatorio più evolutivamente primitivo e indipendente dalle aree neocorticali lo indica inequivocabilmente l'etologia dei primati non umani c. persino, degli altri phyla zoologici. Ampie varietà di vocalizzazioni sono presenti in quasi tutte le specie, e i test realizzati sui primati non umani, oggi anche con tecniche avanzate di brain-imaging, ci dicono che tali vocalizzazioni non implicano l'attività delle aree corticali superiori. I programmi motori che permettono l'esecuzione di queste articolazioni sono quindi regolate da un circuito più antico e funzionalmente più arcaico, infossato negli strati più profondi del cervello (uno schema di questo doppio circuito evolutivamente differenziato è nella fig. 6.16). Ciò non signi

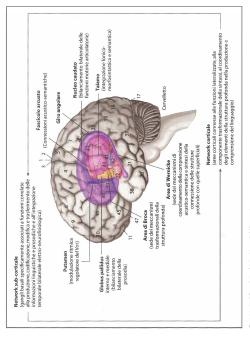


fig. 6.16. Modello evolutivo dei circuiti neurali del linguaggio.

fica, naturalmente, che il funzionamento di una proprietà emergente come il linguaggio umano risulti dalla semplice sovrapposizione dei due circuiti. corticale e subcorticale, stratificati nel tempo evolutivo. Entrambi i circuiti hanno, a loro volta, subito profondi cambiamenti dovuti al riassestarsi degli equilibri adattativo-funzionali in seguito alle mutazioni genetiche che si sono selettivamente affermate nel corso dell'evoluzione. In altri termini non solo le aree corticali superiori ma anche i circuiti sottocorticali motori si sono trasformati in relazione agli usi derivanti dalle conseguenze dei mutamenti filogenetici strutturali.

3. PSICOPATOLOGIA DEL LINGUAGGIO

Rispetto alla prospettiva dominante sino alla metà del secolo scorso, fondata sull'idea dell'autonomia delle strutture linguistiche, l'approccio cognitivo alle scienze del linguaggio si fonda sulla centralità dei processi di pensiero connessi agli usi individuali e sociali del linguaggio (cfr. supra. § 1.1-3). Nell'approccio qui adottato i processi di pensiero e gli usi del linguaggio vengono, inoltre, considerati sempre in relazione alla trasformazione delle strutture biologiche ed ecologiche nel succedersi degli adattamenti evolutivi (cap. II, § 3), come nell'ipotesi delle proprietà emergenti (considerate supra, § 1.3).

In questo complesso quadro gli eventi patologici generano sempre una rottura degli equilibri adattativi che, indipendentemente dagli esiti individuali, quindi dai problemi legati al recupero e alla riabilitazione delle funzioni cognitive, apre una finestra sugli aspetti teorici generali dello studio dei fatti linguistici.

Abbiamo quindi visto (supra, § 2.2) che anche quando l'eziologia patologica è da attribuire a un danno organico subito dai parlanti, la ricostruzione dei modelli neuroscientifici sottostanti non è sufficiente a spiegare esaustivamente né la natura dei disturbi linguistici né l'alterazione dei processi cognitivi.

Per la comprensione di entrambi i fenomeni la ricerca è costretta a proporre ipotesi integrative non immediatamente risolubili nella topografia cerebrale: così, ad esempio, abbiamo osservato che fenomeni apparentemente attribuiti a un malfunzionamento della sintassi sono sempre connessi all'integrazione della componente prosodica, fonologica e semantica, e, viceversa, problemi di comprensione del significato coinvolgono sempre il ruolo svolto dall'integrazione sintattica di qualsiasi processo che abbia a che fare con le trasformazioni delle strutture profonde in strutture superficiali.

L'ipotesi finale qui formulata (supra, § 2.2.3) di un doppio network di funzioni cerebrali evolutivamente stratificate in un livello subcorticale ed uno corticale superiore - strettamente interconnesse - resta sempre una congettura fondata da un lato sulle evidenze empiriche che la ricerca sperimentale ha evidenziato e dall'altro su un modello di funzioni ricostruito a partire dai dati linguistici.

Ouesto – o analoghi modelli che potrebbero formarsi nel corso degli approfondimenti della ricerca empirica – non ci forniscono, tuttavia, alcuna indicazione su tutti quei casi in cui, almeno in apparenza e in relazione allo stato attuale delle conoscenze neuroscientifiche, l'evento patologico non può essere correlato ad alcun evidente danno degli apparati cerebrali.
Nasce, così, il caso della psicopatologia del linguaggio.

3.1. La schizofrenia cimitero della neuropatologia

Che la malattia mentale in generale, e la schizofrenia (quale caso paradignatico) in particolare, debba sessere considerata come alli cimitero della neuropatologia» [Plum 1972] è il perentorio giudizio cui ha dovuto piegarsi anche la componente più organicista del cognitivismo contemporaneo. Riprendendo questo giudizio Frith riportava, nel suo importante trattato del 1992 (The Cognitive Neuropsychology of Schizophrenia) anche la versione scherzosa dell'opinione dei neuropatologi secondo cui «è facile riconoscere il cervello di un paziente schizofrenico perché è quello che appare normale» [1992, 19]. Più di recente Nancy Andreasen – forse la più eminente studiosa clinica di schizofrenia –, constatando l'impossibilità di osservare «contrassegni neuropatologici visibili» e stigmatizzando la natura di un disturbo che comunque «non è di tipo focale o localizzabile in una singola regione», invitava gli studiosi a percorrere nuove strade di ricerca per la definizione del fenotipo della schizofrenia [2000, 106-112]. Anche queste nuove ricerche non hanno, tuttavia, portato a conclusioni soddisfaceno

La ricerca sulla biochimica cerebrale, ad es., ha evidenziato un certo grado di alterazione della trasmissione dopaminergica nelle connessioni sinaptiche dei soggetti schizofrenici [MacKav et al. 1982; Crow, Cross e Johnson 1984; più in generale cfr. Frith 1992, 20 ss.], il che ha fatto pensare a un coinvolgimento del sistema subcorticale e, in particolare dei globi pallidi [Buckley, Callaghan e Mulvany 1995; Pol et al. 2003; Spinks et al. 2005]. Alterazioni dopaminergiche, tuttavia, sono presenti anche in molte altre patologie, tra cui il morbo di Parkinson in cui sono sempre colpite le strutture subcorticali. Senza inoltrarci in questioni di dettaglio, è comunque evidente che se le alterazioni non sono specifiche della malattia esse vanno considerate alla stregua di comorbilità non essenziali a definire la natura di essa e, tuttalpiù, fanno intravedere una correlazione generale tra certi stati fisici e certi comportamenti. Non a caso i trattamenti farmacologici con queste sostanze portano sempre, qualsiasi sia il tipo di patologia, a fenomeni di rigetto sotto forma di comparsa di discinesie tardive (alterazioni motorie e tic incontrollabili) – spesso gravissime nei soggetti schizofrenici che non risolvono. comunque, il loro stato cognitivo patologico. Tale correlazione è, peraltro, statisticamente poco significativa nella schizofrenia, tanto che gli stessi sostenitori di questa ipotesi ne rimarcano la parzialità esplicativa [Kandel 2003, 1190].

Più fondate sembrano le ricerche sulla natura genetica della schizofrenia, anche se il ricco dibattito attorno ad esse ne sta ampliando la problematicità. Gli studi di riferimento in quest'ambito sono quelli di Gottesman che in un importante lavoro del 1991 aveva proposto alla riflessione una sintesi statistica sulla correlazione fra il grado di parentela el rischio di malattia compilata su quaranta studi

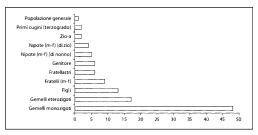


fig.6.17. Fattoriereditari dirischioperla schizofrenia.

Fonte:Gottesman [1991], adattato,

sistematici intorno alle famiglie di appartenenza di soggetti schizofrenici condotti in Europa tra il 1920 e il 1987, esemplificata nel grafico della figura 6.17. In studi più recenti lo stesso Gottesman [Gottesman et al. 2005; Gottesman e Kimling 2001] ha provveduto a smorzare gli entusiasmi che hanno accompagnato la diffusione dei suoi dati e il pericoloso modo (scorretto) di leggerli. Ricordando che i dati riguardano la predizione patologica di un rischio calcolato con metodologia epidemiologica per gruppi e non per individui (quindi la percentuale di rischio interna alla popolazione generale resta dell'1%, a quella dei cugini primi del 2% ecc.), in un saggio del 2001 egli sottolinea che il principale significato della sintesi dei suoi studi è che l'89% degli schizofrenici non ha mai avuto parenti che hanno sofferto dello stesso male. Quello studio, quindi, si occupa «della natura e della distribuzione familiare degli individui geneticamente imparentati, ma non riguarda in alcun modo la determinazione genetica (sic) del disturbo» [Gottesman et al. 2005, 95]. La preoccupazione di Gottesman nasce da due ordini di problemi: il primo è relativo alla proliferazione di programmi di prevenzione che, sulla scorta di una mistificante lettura dei dati genetici, hanno sottoposto migliaia di adolescenti a pericolosi trattamenti farmacologici preventivi [ibidem. 93]. La seconda scaturisce dalla consapevolezza epistemologica che, come nel caso del diabete mellito o dei disturbi coronarici, le indagini sui fattori genetici hanno solo lo scopo di evidenziare correlazioni, giammai quello di suggerire un «ruolo deterministico o fatalistico» nella eziologia patologica dei mali [tbidem, 94]. Ricorda, infine, come, proprio per questi motivi, in un modello multifattoriale, la schizofrenia viene studiata come insieme di predisposizioni prenatali. perinatali e postnatali, combinate con tutti i fattori ambientali connessi allo sviluppo dei soggetti.

Sull'impossibilità di esistenza di un «gene specifico» per la schizofrenia aveva già scritto, d'altronde, parole che potrebbero suonare come definitive Tim Crow schizzando il cosiddetto «paradosso della schizofrenia». Due dati epidemiologici certi esistono, infatti, nella schizofrenia il primo è che si tratta di una malattia «ubiquitaria», presente, cioò in tutte le parti del mondo e in tutti i contesti eco-ambientali e sociali nella medesima proporzione dell'1%, praticamente invariabile nel tempo [cfr. Falzone 2004a, 25 ss.]; la seconda è che si manifesta sempre entro un periodo molto preciso, che vad ai 18 ai 35 anni [Penrose 1991]. In altri termini la schizofrenia è una malattia dell'età riproduttiva. Il paradosso evidenziato da Crow [2000] è che se la schizofrenia dovesse essere determinat da un gene specifico trasmesso secondo le leggi mendeliane della riproduzione si sarebbe dovuta estinguere nel giro di qualche generazione, seguendo le normali procedure della selezione naturale.

Ilfatto che essa persista sempre nella stessa percentuale e anche che sia presente in circa la metà dei gemelli monozigoti fa propendere Crow per una tesi diversa, per molti aspetti assolutamente ineccepibile: la schizofrenia è non ontogeneticamente ma filogeneticamente ereditaria, trattandosi di una mutazione connessa all'intera specie umana ed acquisita nel momento in cui l'Homo sapiens, taggiunto il punto di non-ritorno del linguaggio, cominciò a sviluppare strutture ereclevala isammetriche e specializzate. La formula con cui Crow racchiude la sua suggestiva tesi è che «la schizofrenia è il prezzo che l'Homo sapiens paga al linguaggio» [ibidem]: la patologia schizofrenia avrebbero così contratto un legame molto più stretto di quello che normalmente si è portati a credere un legame di natura antropologica, strutturale, fondativa.

3.2. Schizofrenia e linguaggio

L'idea della co-origine di schizofrenia e linguaggio, che ha aperto una delle pagine più originali e importanti nella storia delle scienze cognitive contemporanee, sembra mostrare, tuttavia, un punto debole su cui si è da tempo sviluppato un ampio dibattito [Annett 1999; 2002; Pennisi 2005; Pennisi et al. 2002; 2004; Pennisi e Patone 2003]. Nell'ipporesi di Crow il livello delle proprietà emergenti del linguaggio considerate pertinenti a def'inito resta quello della fisiologia del-l'apparato fonatorio e dei corrispettivi correlati morfologici di natura cerebrale. In altre parole Crow pensa che la schizofrenia sia un disturbo della lateralizzazione emisferica connesso alla comparsa – per una mutazione genetica casuale che ha colpito alcuni ominidi e che si poi è affermata come tratto dominante dell'intera popolazione dei sapieras – di una specializzazione emisferica irreversibile. Prima di essa non potevano sorgere i disturbi schizofrenici poiché sarebbe mancato il sostrato fisiologico su cui innestarsi. Linguaggio e lateralizzazione cerebrale, dunque, sarebbero co-originari [Crow 2000] e delineerebbero u comune quadro di proprieta emergenti non più riducibili a stati precedenti.

La tesi, che appare straordinariamente produttiva dal punto di vista teorico, riduce, tuttavia, inaccettabilmente il campo di pertinenza delle proprietà emergenti del linguaggio. Stando a essa la schizofrenia dovrebbe, infatti, produrre disturbi linguistici connessi a una ridotta o abolita lateralizzazione cerebrale sinistra: disturbi, quindi, analoghi a quelli prodotti dalle afasie, dalle agnosie, dalle alessie, dalle anartrie, di natura articolatoria, lessicale o morfosintattica.

I dati empirici portati a sostegno di questa legittima «proiezione» non appaiono, tuttavia, convincenti. Indubbiamente esiste una certa correlazione statistica tra la schizofrenia e la tendenza all'indifferenziazione emisferica funzionale: il raggiungimento del cosiddetto «punto di cecità emisferica» [Highlev et al. 1998; Gur 1977]. Tuttavia l'associazione tra una mancata o diversa lateralizzazione cerebrale (indistinzione emisferica, mancinismo ecc.) e la presenza di disturbi linguistici. già nei soggetti normali, è del tutto infondata. Chi è mancino o ambidestro o, comunque, non mostra una spiccata asimmetria funzionale, parla altrettanto bene di chi è perfettamente lateralizzato a sinistra. Quanto agli schizofrenici, ammesso pure che lateralizzino in maniera diversa dai soggetti normali, come i «simmetrici sani», non presentano performances deficitarie nelle abilità articolatorie, lessicali o morfosintattiche.

La specificità linguistica della schizofrenia – come abbiamo accennato (supra. § 1.3) – è invece da ricondursi a una sorta di eccentricità pragmatica negli usi del linguaggio, a un'anomalia semantica rispetto agli usi codificati nel senso comune [Pennisi 1998]. La tesi di Crow, quindi, si attaglierebbe meglio a una co-origine di afasia e linguaggio, che non a quella tra linguaggio e schizofrenia.

3.2.1. Schizofrenia, autismo, Teoria della Mente

Sullo statuto formale del cosiddetto linguaggio schizofrenico si registra, tuttavia. una marcata differenza tra l'approccio cognitivista e quello antropoanalitico o, più generalmente, filosofico-linguistico.

La neuropsicologia cognitivista, in assenza di una precisa mappatura dei correlati morfologici della schizofrenia (cfr. infra, § 3.1), considera lo «schizofrenese» innanzitutto secondo uno schema valutativo di tipo fortemente normativo. Ad es., secondo Ch. Frith, gli schizofrenici usano male le «regole che guidano il modo in cui le frasi possono essere combinate per costruire un'idea precisa o una storia» [1992, 101] ed esibiscono «una mancanza di progettazione ed esecuzione» [ibidem. 102]. Più si va nello specifico, più questo approccio normativistico viene alla luce. Discutibile, ad es., è il modo in cui Ch. Frith spiega le supposte omissioni di particelle grammaticali di un soggetto schizofrenico che pronuncia la seguente frase: «vedo una donna in mezzo a un cumulo di neve. Vedo una donna in una cabina telefonica in mezzo a un cumulo di neve che fa "yackety, yack, yack"». Il commento che ne scaturisce è indicativo: «dopo la sua prima comparsa in questo passaggio, la donna poteva essere sostituita con il pronome ella. In questo esempio, colui che parla ricorda senza necessità all'ascoltatore che sta parlando di una donna: il suo discorso è pomposo, pedante e ripetitivo (sic)» [ibidem, 103].

D'altro canto una tendenza normativistica si registra non solo nella componente neurocognitiva ma anche in quella psicologica del cognitivismo

contemporaneo, tutta orientata sul colloquio terapeutico e sugli interventi linguistici «ricondizionanti». In questo ambito il paradigma di riferimento non è la teoria computazionale della mente, e i deficit presupposti non si identificano con disturbi dell'information processing. Certamente anche la psicologia cognitiva considera fondamentale il processo di acquisizione ed elaborazione delle informazioni. Tuttavia, in questa versione soft del computazionalismo, si riconosce che tale processo è condizionato, non in maniera accidentale o episodica, ma del tutto sistematica, dai fattori emotivi che possono causare il suo deragliamento. Di conseguenza l'intento normativistico si manifesta in maniera più sfumata come ricorso a un «razionalismo critico» praticato all'interno dei metodi costruttivisti e associazionisti di Beck. Ellis. Kelly e Bowlby. In questo contesto «il compito del terapeuta è quello di "individuare" le convinzioni irrazionali e di "sostituirle" con convinzioni più adeguate (che lui ovviamente stabilisce), o comunque di guidare il paziente alla critica delle convinzioni irrazionali mentre il terapeuta gli "insegna" quali errori logici commette e lo "educa" a un ragionamento più adattativo» [Reda 1993, 30; cfr. Cionini 1991, 63 ss.], Tra le edificanti intenzioni di questo metodo e l'esperienza empirica si apre, tuttavia, un baratro, Nella pratica il colloquio terapeutico condotto con l'intento di convincere il paziente delle sue contraddizioni, si rivela, con i pazienti schizofrenici e paranoici, un discorso tra sordi [Selzer et al. 1989, 177 ss.].

All'interno del paradigma cognitivista, è stata tuttavia formulata di recente un'ipotesi teorica ben più rilevante di quelle improntate ai metodi sommariamente normativistici qui analizzati per spiegare i comportamenti schizof renici. «La mia conclusione - scrive ancora Ch. Frith - è che alcuni disturbi del pensiero schizofrenico riflettano un disturbo di comunicazione causato in parte dall'incapacità del paziente di prendere in considerazione la conoscenza dell'ascoltatore nella formulazione del proprio discorso» [1992, 104]. Per la prima volta, quindi, il paradigma cognitivista prende in seria considerazione gli elementi ecologici del processo comunicativo, considerando come fattore «interno» al funzionamento della mente una funzione sociale come l'immedesimazione inferenziale ed empatica [Blakemore, Winston e U. Frith 2004; U. Frith e Ch. Frith 2006]. Baron Cohen e Uta Frith hanno provato a precisare questa nuova prospettiva formulando l'ormai celebre Teoria della Mente [Baron Cohen 1995; Leslie 1987; U. Frith et al. 1989], tarata sui soggetti autistici e magistralmente esemplificata nel fondamentale Autism, Explaining the Enigma (U. Frith 1989). Le alterazioni cognitive e linguistiche studiate dalla Frith negli autistici, a una prima analisi, sembrerebbero avere molti punti di contatto con quelle degli psicotici: l'egocentrismo del significato e della comprensione, la bizzarria delle espressioni, l'interpretazione «letterale» delle frasi ecc. [Brauner e Brauner 1978: Pennisi 1998]. Sembrerebbe, in altri termini, che autistici e schizofrenici non si pongano il problema del significato «pubblico» del linguaggio, coltivandone solo la dimensione «privata»: menti «cieche» alla socialità del linguaggio. Secondo Uta Frith [1997; 2001] e Uta e Chris Frith [2001] esisterebbero anche delle precise basi neurali per i mec-

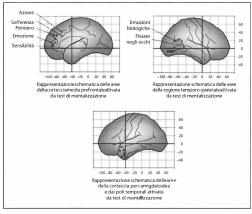


fig.6.18. Topografia cerebraledella Teoria della Mente. Fonte:U.FRITH[2001]

canismi dell'interazione sociale carenti negli autistici e nei soggetti psicotici. Hanno, infatti, trovato – riprendendo una nutrita schiera di studi precedenti - che il fallimento dei processi di mentalizzazione è correlato a un'alterata funzionalità della corteccia media prefrontale, della giunzione temporo-parietale e dell'amigdala (fig. 6.18).

Ulteriori studi hanno messo a punto una più precisa mappa neuroanatomica della Teoria della Mente (per una completa panoramica cfr. Abu Akel [2003a]) rilevando anche l'attivazione della regione parietale posteriore durante i processi di autorappresentazione degli stati mentali [Vogeley et al. 2001; Iacaboni et al. 1999; Spence et al. 1997; Berlucchi e Aglioti 1997; Ruby e Decety 2001] e quella del solco parietale superiore nella rappresentazione degli stati mentali altrui sia nei primati superiori sia nei soggetti umani [Hietanen e Perrett 1993; Oram e Perrett 1994; Jellema et al. 2000; Puce et al. 1998; Grèzes, Costes e Decety 1999]. Infine alcune ricerche hanno evidenziato che esistono regioni neurali attivate sia nell'autorappresentazione degli stati mentali sia nella rappresentazione degli

stati mentali altrui, suddividendosi in un primo gruppo di strutture limbiche e paralimbiche (l'amigdala, il giro cingolato anteriore, la corteccia orbito-frontale) e in un secondo gruppo di strutture della corteccia prefrontale e dorsale (la mediale ventrale e dorsale e quella frontale infero-laterale).

Il primo gruppo dovrebbe risultare indebolito nei soggetti autistici e schizofrenici. In particolare l'amigdala sembra svolgere un ruolo importante anche nei soggetti con sindrome di Asperger [Baron-Cohen et al. 1999; Fine, Lumsden e Blair 2001]. Il sistema limbico e paralimbico e il giro cingolato anteriore sembra, poi, che giochino un importante ruolo nei processi emozionali e attentivi connessi ai fenomeni empatici: anche in questo caso autistici e schizofrenici mostrano anormalità più o meno evidenti [Bauman e Kemper 1994; Bauman 1999; Taylor et al. 2002].

Il secondo gruppo di strutture è stato studiato soprattutto da Rizzolatti e Gallese, che hanno scoperto, quasi involontariamente, il ruolo dei «neuroni-specchio». Osservati per la prima volta negli scimpanzé, questi neuroni «sociali» sono stati localizzati nella corteccia premotoria ventrale (F5), la regione più simile all'area di Broca degli umani. Gli importanti studi di Rizzolatti e Gallese hanno tuttavia chiarito che gli eccessi «speculativi» sulle presunte localizzazioni della Teoria della Mente non sono affatto giustificate dai risultati ottenuti tramite l'analisi neurofunzionale dei neuroni-specchio [Gallese 2003, 13]:

Molto di ciò che nel corso dei nostri rapporti interpersonali attribuiamo alla attività di una supposta capacità di formulare teorie sulla mente altrui, deriva, in realtà, da meccanismi molto meno «mentalistici». Sarebbe cioè il risultato della creazione di uno spazio noi-centrico condiviso con gli altri. La creazione di questo spazio condiviso sarebbe il risultato dell'attività di «simulazione incarnata» (embodied simulation) definita, a sua volta, in termini sub-personali dall'attività di neuroni-mirror che permettono di mappare sullo stesso substrato nervoso azioni eseguite e osservate, sensazioni ed emozioni esperite personalmente e osservate negli altri.

Anche i più avanzati studi neuroscientifici portano, quindi, a riflettere sugli eccessi intellettualistici della Teoria della Mente. Di fatto sappiamo solo che comportamenti apparentemente diversi come azioni, emozioni, sensazioni e pensieri, oggetto di operazioni da noi distinte come imitazione, empatia, percezione e inferenza, vengono attivate da uno stesso gruppo di neuroni sia che siamo noi i soggetti attivi sia che lo siano le persone a noi prossime nello spazio interazionale.

Un altro aspetto caratteristico della Teoria della Mente – conseguente alla tendenziale abolizione della dimensione sociale degli usi del linguaggio - che accomunerebbe autistici e psicotici, sarebbe costituito dall'amplificazione di certe facoltà di elaborazione delle percezioni: ad es., scoprire figure nascoste all'interno di figure più ampie; saper manipolare stringhe di caratteri prive di senso: specializzarsi nella decostruzione degli elementi morfologici della lingua mostrando una sorta di attitudine «ludica» alla composizionalità che. negli schizofrenici porta alla creazione di paralogismi e neologismi e, in alcuni

eccezionali casi, persino alla creazione di intere «neolingue» [Flournoy 1900; Pennisi 1998; 2001]. Di questi residui «isolotti di capacità» [U. Frith 1989, 12], viene sottolineato dall'autrice il carattere localistico. In altri termini, questi soggetti riescono a produrre prestazioni migliori di quelle dei soggetti normali in tutte le occasioni in cui è necessario astrarsi dal contesto. La comprensione contestualizzata è invece ostacolata dall'impossibilità di tener conto della pluralità di elementi indispensabili a ricostruire il quadro di insieme.

Da questi indizi la Frith trae l'ipotesi della primarietà della coerenza centrale nel funzionamento ordinario dei sistemi cognitivi. Secondo questo principio «è possibile che esista una forza (immaginate un fiume impetuoso) che trascini assieme grandi quantità di informazioni (molti affluenti)» [ibidem. 122]. Tale forza genera una «coesione di alto livello» che permette di contestualizzare continuamente il senso e impedire che i frammenti naufraghino alla deriva, come, appunto, accadrebbe – nell'ipotesi dell'autrice – nell'autismo e nella schizofrenia. Al di fuori degli stati patologici essa è sempre presente: «è possibile che solo individui eccezionali possano creare una vera e propria coerenza globale (tutti i fiumi scorrono verso un unico oceano)» [ibidem] ma la tendenza centralizzatrice riguarda chiunque. Secondo questo modello, quindi, esisterebbe un'organizzazione fortemente gerarchizzata della mente, al cui centro si porrebbe la forza centrifuga della coesione, garante delle possibilità di adattamento evolutivo della specie. Senza guesta forza, infatti, «i frammenti d'informazione rimarrebbero solo frammenti, per grandi o piccoli che siano. Come frammenti sarebbero di uso limitato nel programma a lungo termine dell'organismo per il suo adattamento intelligente all'ambiente» [ibidem, 123]. Dal nostro punto di vista è essenziale rilevare che [ihidem, 126-127]:

la normale operazione della coerenza centrale costringe gli esseri umani a dare priorità alla comprensione del significato. È per questo che siamo in grado di estrarre facilmente ciò che è significativo dal materiale senza significato [...] il senso è ricordato meglio se può essere immesso in un contesto più ampio. Il bisogno di immettere l'informazione in un contesto sempre più vasto è un altro modo di considerare gli effetti della coesione centrale [...] La capacità di dare un senso, di vedere il significato e la struttura in ogni cosa [...] è qualcosa che non possiamo fare a meno di fare, [...] è un'estensione e al tempo stesso una limitazione della nostra capacità di elaborazione dell'informazione.

Allontanandosi da una formulazione rigida del modularismo, questa tesi presenta elementi di compatibilità sia con la tradizione strutturalista (il principio saussuriano del tout-se-tient), sia con la concezione kraepeliniana del progressivo arricchimento dei processi rappresentativi [Kraepelin 1899, I. 144]. L'idea che le accomuna è che i sistemi cognitivi sopravvivono solamente in virtù della loro tendenza ad espandersi in contesti sempre più ampi e ricchi senza mai perdere l'unità o la coerenza di fondo. L'incremento «localistico» sembrerebbe assumere valore solo nell'ambito di queste totalità autosufficienti, retrocedendo a livello di «isolotto» qualora la patologia colpisca il livello della «coerenza centrale».

Ouesta sorprendente convergenza di metodi e teorie diverse attorno a un modello di coerenza cognitiva globale tanto ben del'inito da superare la contraddittoria eterogeneità dei linguaggi clinici e filosofici attraverso cui si è arrivati a formularlo, ha tuttavia un punto debole, sinora non spiegato da alcuna ipotesi. Esso è costituito dal singolare paradosso che, se l'ipotesi fosse interamente vera, l'esemplificazione più rappresentativa di questo modello sarebbe il soggetto paranoide che apparirebbe proprio come uno di quei già citati «individui eccezionali» che possono «creare una vera e propria coerenza globale» in cui «tutti i fiumi scorrono verso un unico oceano». Nessun soggetto mostra, infatti, una tendenza alla «coerenza globale» come il soggetto paranoide. Lungi dal difettare in coesione, in «capacità di dare un senso, di vedere il significato e la struttura in ogni cosa», il paranoide manca, al contrario di «tendenza critica», per usare un termine neutrale adottato dagli psichiatri. Ciò, in pratica, vuol dire che non riesce a invalidare il senso, a frenare «il fiume» che lo porta a trovare per ogni fatto una spiegazione. A confutare, quindi, e non a produrre, il significato: proprio allo scopo di riempire di senso ogni fatto o avvenimento il soggetto psicotico dedica tutta la sua vita, sviluppando una sbalorditiva capacità di mobilitare ogni funzione «locale» per metterla al servizio della coerenza delirante [Pennisi 1998, 102].

Ci pare importante rilevare che questo genere di paradossi - sino a un decennio addietro completamente ignorati dal paradigma cognitivista - sono oggi, grazie alla psicopatologia del linguaggio, presi in seria considerazione anche dalla componente neuroscientifica più radiciale. In un recente importante lavoro di Abu Akel sulla mappatura neurobiologica della teoria della mente si riconosce, infatti, che sottoponendo a test empirici gli schizo-paranoidi, anzichè un deficit si riscontra, al contrario, un'ipertrofia della teoria della mente, una «hyper-sheory-of-mind che spinge alcuni soggetti a sovrattribuire conoscenze ed altri stati mentali ai loro interlocutori» (2003a, 31; cfr. anche Abu Akel e Bailey 2000, 735-737; Sarfai et al. 1997; 1999; Davislon et al. 20001.

3.2.2. Forme di vita e modalità di esistenza

In realtà il problema sollevato è impossibile da affrontare con un metodo fondato sul normativismo linguistico e richiederebbe quegli strumenti di indagine filosofica che l'antropoanalisi e la psicopatologia del linguaggio hanno proposto in questi ultimi anni.

Per riassumere il punto di vista dell'approccio cognitivista si potrebbero usare le parole di Kandel [2003, 1193]: «una persona non è schizofrenica, una persona ha la schizofrenia». Che è l'esatto opposto dell'idea dell'antropoanalisi di Binswanger secondo cui la schizofrenia è invece una modalità di esistenza, o della filosofia linguistica di Wittgenstein che la considererebbe una forma di vita.

Per la verità, sebbene tendano a convergere da un punto di vista concettuale, esiste, tuttavia, una differenza tra le Daseins formen di Binswanger e le Lebensformen di Witteenstein. Almeno nel primo caso è chiaro che la forma di esistenza in cui vive lo psicotico non è determinata dai fondamenti biologici della specie e neppure dalle anomalie fisiologiche dei singoli individui. Nel caso della Lebensform di Wittgenstein ciò non è del tutto chiaro; nelle più recenti interpretazioni, accanto a una concezione culturalista e antropologica [Haller 1981: 1984: McGinn 1984] (per una sintesi delle posizioni, cfr. Andronico [1996]), sembra maturarne un'altra più prettamente biologica [Lo Piparo 1994: 1999], secondo cui la nozione di «forma di vita» coinciderebbe con le caratteristiche cognitive filogenetiche specie-specifiche dell'uomo.

Pur riconoscendo la piena fondatezza di tutte queste interpretazioni, si può convenire che sia comunque estranea a Wittgenstein ogni preoccupazione epistemologica nel distinguere una natura biologica, antropologica o culturale da cui sarebbero condizionati gli individui nel costruirsi sistemi linguistici per i più disparati scopi. Non che tali differenze non esistano, tuttavia non sono rilevanti rispetto allo scopo del filosofo del linguaggio che è interessato solo a circoscrivere le condizioni secondo cui gli enunciati risultino interpretabili all'interno di un certo giuoco linguistico.

Vista da questa angolazione, più prudentemente e generalmente, la nozione di forma di vita potrebbe essere interpretata come l'insieme di condizioni che limitano un giuoco linguistico, un'attività. Anche questa nozione, come quella di proposizione, linguaggio, grammatica ecc., non costituisce, infatti, un'essenza, ma un insieme di usi: in termini etologico-evolutivi una pratica fondata su quella che - come abbiamo visto supra. § 1.2 - Tomasello [1999] chiama «attenzione condivisa» (o «congiunta»).

In tal modo possiamo considerare forme di vita le rappresentazioni delle specie zoologiche, delle diverse visioni del mondo, dei portatori di handicap fisiologici: insomma tutte le presupposizioni sottostanti agli scopi dell'enunciazione dei discorsi. Queste disparate famiglie di usi concordando solo nel fatto che mentre non sappiamo, in positivo, ciò che un individuo che condivide una di queste forme di vita può fare, sappiamo, in negativo, ciò che non può fare. Così una scimmia non può capire un linguaggio alfabetico, una certa popolazione non può capire il senso di una certa usanza religiosa, un cieco non può sapere cos'è un colore, un osservatore esterno non può capire espressioni fortemente contestualizzate ecc

Le forme di vita non sono, tuttavia, equidistanti. I fondamenti biologici del linguaggio, ad esempio, circoscrivono una zona comune che apparenta, per certi aspetti, tutte le specie dotate di tratto vocale sopralaringeo e di aree cerebrali dedicate, consentendo un modo di esprimersi basato sulla forte capacità di modulazione articolatoria (cfr. cap. II, §§ 1.1 e 3.1 e supra, §§ 1 e 2.1). Da questo punto di vista le diversità antropologiche costituiscono una differenziazione di forma di vita più specifica e circoscritta: anche chi appartiene a una popolazione che non può capire certe usanze religiose si esprime attraverso l'articolazione linguistica. Trattandosi, tuttavia, di una famiglia di sensi, la nozione di forma di vita non può risolversi in un insieme di inclusioni o tassonomie logiche. A seconda della prospettiva con cui guardiamo alla questione potremmo anche arrivare alla conclusione paradossale che esistono più punti di contatto tra la

nostra visione del mondo e quella di una scimmia che non tra la nostra e quella di un soggetto con patologie o psicopatologie gravissime4.

Ciò che mi pare caratterizzi la posizione di Wittgenstein su questo punto è il disinteresse metodologico per la natura dei limiti linguistici e, quindi, per le differenze tra le forme di vita. A fronte di questa grande varietà di fenomeni fa riscontro, infatti, un unico metodo d'analisi, che, tuttavia, si differenzia qualitativamente e quantitativamente in relazione alla specificità e all'ampiezza dei limiti che ogni singola forma di vita presenta. Questo metodo accomuna l'analisi linguistica di Wittgenstein e la psicopatologia del linguaggio dell'antropoanalisi.

Da un punto di vista tecnico la categoria patologica secondo cui la prospettiva antropoanalitica classifica le psicosi pauci-sintomatiche (quelle, cioè, senza manifestazioni «spettacolari»), e la schizofrenia in particolare, è, infatti, la «perdita dell'evidenza naturale» [Blankenburg 1971]. Essa consisterebbe in una sorta di estraniazione spontanea del soggetto dai fondamenti semantici del senso comune e, quindi, in un certo senso, anche dai fondamenti della Teoria della Mente. Pure l'autismo, sotto questa angolazione, può essere considerata una perdita dell'evidenza naturale. Entrambe, infatti: a. possono lasciare intatte alcune capacità cognitive e fattuali complesse e «difficili», mentre colpiscono sempre alla radice la naturalità dei comportamenti umani più elementari e vitali: b. preservano le capacità articolatorie e sintattiche del linguaggio, ma mostrano un modo assolutamente anomalo e «spiazzante» di usare la semantica.

In maniera del tutto indipendente, Wittgenstein torna ripetutamente su questi punti. In Zettel, ad es. [Wittgenstein 1967, 393], descrive quella insorgenza dell'estraniazione che Binswanger attribuisce alla modalità d'esistenza schizofrenica e alla perdita dell'evidenza naturale in maniera efficace:

possiamo facilmente immaginare, e raffigurare in tutti i loro dettagli, eventi che, quando li vedessimo arrivare, ci farebbero perdere la fiducia in tutti i nostri giudizi. Se un giorno o l'altro invece dell'ambiente a me ben noto, vedessi dalla mia finestra un ambiente completamente nuovo e le cose, gli uomini, gli animali, si comportassero come non si sono mai comportati, allora forse pronuncerei le parole «Sono diventato pazzo» [...]. In tutto questo la cosa importante, per me, è che tra uno stato di auesto genere e lo stato normale non c'è nessun limite netto.

Tutta la prima parte della Certezza è dedicata, d'altronde, alla sostanziale impossibilità di decifrare logicamente «la differenza tra errore e disturbo mentale» [Wittgenstein 1969, 73], schizzando quello che può apparire come il ritratto

^{*} Sulla base dell'esempio di una popolazione con un'educazione e un apparato concettuale completamente diversi dai nostri, anche se somigliante per qualche aspetto: «"questi uomini non avreb bero nulla di umano". Perché? – Per noi sa rebbe impossibile comunicare con loro. Neppure come comunichiamo con un cane. – Non potremmo ritrovarci in loro. E tuttavia potrebbero benissimo esserci creature così, umane per tutto il resto» [Wittgenstein 1967, 390]. 5 «Dei deficienti ci facciamo l'idea che abbiano l'aspetto di uomini degenerati, sostanzialmente incompleti, per così dire, di straccioni. Dunque ce li immaginiamo sotto l'aspetto del disordine, e non sotto l'aspetto di un ordine primitivo (modo di vedere, questo, che sarebbe molto più produttivo). Appunto, non riusciamo a vedere una società di uomini così» [ibidem, 372].

cognitivo tipico del soggetto paranoico autore di un mondo logicamente coerente e grammaticalmente lecito ma fondato su presupposti falsi [ibidem, 67 e 71]. Anche in questo caso tra normalità e follia non c'è alcun limite netto e il paranoico può pericolosamente assomigliare al matematico o al filosofo che non ammette o evita di affrontare i paradossi e le contraddizioni, immaginando un'esistenza in cui «tutta quanta la nostra ricerca sia orientata in modo che certe proposizioni, ammesso che vengano mai formulate, stiano al riparo da ogni dubbio» [ibidem, 88].

L'essenza della patologia psicotica svolge egregiamente, da questo punto di vista, il ruolo formale di una grammatica, e ciò perché «tutti i controlli, tutte le conferme e le confutazioni di un'assunzione hanno già luogo all'interno di un sistema» che non è «il punto di partenza, quanto, piuttosto, l'elemento vitale della argomentazione» [ibidem, 105]. Le prassi, le credenze, ci sono sempre rese plausibili da una «totalità di giudizi» che sono andati stratificandosi nel tempo col costituirsi di una modalità di esistenza da cui non si può uscire: «è come se i nostri concetti fossero condizionati da un'incastellatura di dati di fatto» [Wittgenstein 1967, 3591; «tutto quanto il brulicare delle azioni umane, il sottofondo su cui vediamo ogni azione, determina il nostro giudizio, i nostri concetti e le nostre azioni» [ibidem, 567]. È questo il motivo per cui «il modo in cui una parola si capisce, questo le parole da sole non lo dicono» [ibidem, 144].

Pur partendo da un punto di vista del tutto estraneo alla logica clinica della perdita dell'evidenza naturale, l'impostazione filosofica e il metodo wittgensteiniano finiscono, per questa via, con lo spiegare molti dei comportamenti che restano completamente estranei al normativismo della neuropsi cologia cognitivista. Le «storie naturali inventate» di Wittgenstein sembrano tratte dalla prassi quotidiana della psicopatologia linguistica della schizofrenia [ibidem, 148]:

Si potrebbe pensare a un linguaggio in cui i significati delle parole cambiassero secondo determinate regole; per esempio, al mattino la parola A vuol dire questa cosa, al pomeriggio quest'altra. Oppure potremmo pensare un linguaggio in cui le parole cambiassero di giorno in giorno, in quanto ogni giorno, a ogni lettera che componeva la parola il giorno precedente si sostituisce la lettera dell'alfabeto immediatamente successiva (e a z si sostituisce a)

Questo esempio sembra speculare a quello citato da Raggi [1891] relativo ad uno schizofrenico che, sulla base del principio che si dovesse eliminare sistematicamente «qualsiasi allusione ad oscenità o a bestemmie che nei singoli vocaboli potesse trasparire», compone una grammatica che fissa dettagliatissimi criteri di sostituzione regolare e progressiva delle lettere con altre lettere, e che, man mano che le enunciava, andava applicando, riducendo, di giorno in giorno, la decifrabilità degli stessi discorsi grammaticali che andava fissando. A titolo di esempio diamo qualcuna delle norme primitive di questo soggetto:

1°) osgni 'di' 'de' 'te' si iscangiono in 'dli', 'dle', 'tle', escettio 'Dio' SS.T. a iscanso di trasgredlire o sprofanare il secondo SS, scomandamento Divino; 2°) A tleti 'c'. 'g', 'p', 'b' si asgiunge un s antlesposta e fannosi 'sc', 'sg, 'sp, 'sb'; quando poi 'sc' suona 'x', scome spesce sottiospontlesgiasi una dlelle 'c' sconsonanti 'sc' come li Francesi. Indli si asgiunsge un 'i' o 'in' a seconda sche scominsciavano sper 'c' o 'sc', scosi 'iscrivere', 'inspirare', cla 'scrivere' e 'ispirare'[...].

Sempre in Zettel Wittgenstein ipotizza anche quegli effetti linguistici che oggi riconosciamo nell'apparentemente assurda semantica degli autistici: «si potrebbe immaginare una malattia mentale, in cui un tizio può usare e capire un nome soltanto in presenza del suo portatore» [1967, 714].

Numerosi studi [Kanner 1943; Rimland 1965; U. Frith 1989; Brauner e Brauner 1978] hanno, infatti, dimostrato che gli autistici – come abbiamo già accennato (supra, § 3.2.1) – «individualizzano» la comprensione dei significati. Un soggetto negava, ad es., che il cane visto di fronte e di lato avesse lo stesso nome; un altro era sconcertato dal fatto che un accendigas piezoelettrico che era stato usato per accendere il fornello del gas non si chiamasse «fiammifero» [Brauner e Brauner 1978, 63]; un altro ancora negava il nome di «matita» a una matita di forma leggermente diversa da quella che usava abitualmente [ibidem]. Addirittura una bambina autistica era capace di cambiare molte volte il nome di uno stesso oggetto che veniva usato in modi diversì. Insomma la comprensione verbale da parte dei soggetti autistici si fonda «su un aspetto parziale dell'oggetto denominato» [ibidem, 47], «ogni parola rappresenta una realtà vista da una sola angolazzione» [ibidem, 49], «appartiene soltanto a un'unica realtà» [ibidem. 63].

Ancora in Zettel, ma riprendendo più volte l'esempio in altre opere, Wittgenstein formula con precisione i problemi riscontrabili nelle glossolalie schizofreniche, cui accennavamo (supra, § 3.2.1): «supponiamo che a tutte le parole della mia lingua io voglia sostituire di colpo altre parole. Come farei a sapere, io, in quale posto sta una delle nuove parole? Sono le rappresentazioni, a tenere il posto delle parole?» [1967, 9].

La glossolalia degli schizofrenici è un dato clinico accertato sin dalla psichiatria di metà Ottocento. Gli schizofrenici possono intervenire sui nomi in più modi: producendo paralogie (quindi usi dei nomi con significato diverso da quello usuale) oppure creando ex novo non solo parole ma interi testi o, addirittura, neolingue. Ciò che caratterizza queste produzioni e ne permette la decifrabilità, è la regolarità dell'uso, sia morfologico sia semantico.

Un esempio interessante è costituito dalle lettere di uno schizofrenico dell'ex manicomio «Mandalari» di Messina che utilizza, all'interno di un corpus testuale formato da moltissime lettere distribuite in un vasto arco di tempo, un'intera famielia di parole morfologicamente derivate.

Come si può facilmente notare (tab. 6.2) la regolarità della costruzione è garantita dal monema tiloti comune a tutte le forme registrate. Quando appare in costruzione verbale viene inserito un infisso che assume la forma titot. Quest'ultima è analoga a quella che si ritrova nella forma sostranivata con i suffissi -o e -ista. Inoltre ogni forma composta è preceduta dal prefisso itili- o litili- che sibisce variazioni per i legami di eufonia sintattica con la parola che precede (in genere una vocale con la forma che comincia per consonante e viceversa). Che il soggetto

		tiloti tiloti tiloti	tiot tiot	ZZ ZZ	o erei
	lilili	tiloti	tiot ti	ista O	
de	(I) lili	tiloti	ti	0	

Fonte: Pennisi [1998].

sia attento a questo genere di nessi lo si può vedere anche dall'ultima forma nella quale, poiché viene aggiunto il prefisso privativo de-, si rende necessaria la frapposizione di una l tra il privativo e il prefisso lili. In sintesi ci troviamo di fronte a un caso che presenta una parziale analogia con il sistema comune (i suffissi -izzo, -izzerei-ista) ma che, contemporaneamente, crea dei suffissi regolarmente privati, cioè non riconosciuti nella langue pubblica ma certamente leciti dal punto di vista di una grammatica dei costituenti immediati (tiot, ti).

L'uso di queste forme presenta, inoltre, una regolare pertinenza contestuale e pragmatica6: dall'analisi testuale dell'intero corpus, comprendiamo che le forme ricorrono sempre all'interno del campo semantico relativo alla «redenzione delle donne tramite inseminazione». Tale paziente, infatti, è preda di un delirio erotico e di grandezza, che lo convince a credersi un novello Cristo, salvatore di anime femminili grazie alla sostanza divina del suo sperma.

Per rispondere all'interrogativo posto da Wittgenstein diremmo quindi che sì, sono proprio le rappresentazioni, come proiezioni interne a quella modalità d'esistenza fondata sul principio «grammaticale» della «missione inseminatrice», che permettono di conoscere con determinatezza la posizione corretta dei neologismi. Inutile dire che ciò vale, a maggior ragione, nei casi di neolingue globali. in cui è sempre chiara la funzionalizzazione dell'uso neologico a determinati scopi. Essi costituiscono la «chiave» che permette di sciogliere il significato lessicale [1977, 69];

nella follia la serratura non viene distrutta, ma solo cambiata: la vecchia chiave non può più aprirla, ma una chiave di forma diversa potrebbe.

Si potrebbe continuare a lungo citando precisi riscontri empirici di «storie naturali inventate» ma il principio di questa insospettabile corrispondenza tra le «favole vere» e la realtà dell'empiria clinica è enunciata con cristallina semplicità dallo stesso Wittgenstein [1967, 359; 1969, 63];

⁶ Diamo alcuni contesti in cui appaiono le forme neologiche. Ililitiletitietizze: «imperocche occorre che ililitilotitiotizzo per causarti i commutamenti», «per fare che ciò non avvenisse occorre che la ililitilotitiotizzo»; ililitilotitiotizzerei: «donne che morirebero compromesse se io non ililitilotitiotizzerei»; ililitilotitiotista: «NOME DEL PAZIENTE ililitilotitiotista e immortalizzatore» [si firma così]; lililitilotio: «lililitilotio, secrezione mista o derivata di quanto tu leggiadra amante mammina mi mandi», «per appagare le brame nostre mammine seducenti esigere lililitilotitio liquor miele»; dellililitilotitio, «con il dellililitilotitio non vi salvate».

se immagini certi fatti altrimenti, se li descrivi altrimenti da come sono, allora non puoi più immaginare l'applicazione di certi concetti, perché nelle nuove circostanze le regole della loro applicazione non hanno nulla di analogo.

se ci immaginiamo gli stati di fatto diversamente da come sono, allora certi giuochi linguistici perdono d'importanza, altri diventano importanti. E così cambia, e cambia gradualmente, l'uso del vocabolario della lingua.

I linguaggi psicopatologici – come forme semiotiche della perdita dell'evidenza naturale – quindi, rientrano nell'ordine delle possibilità di una forma di vita. Nessuno può sapere infatti, sin quando non se ne rivelino alla luce tutte le presupposizioni e le implicanze, se un certo giuoco linguistico corrisponda a una stratificazione profonda o necessità logica dell'esistenza. Qualsissia esistenza è fondata, d'altro canto, sulle strutture eco-et-ologiche che la filogenesi. Portogenesi e la sociogenesi hanno fissato rispettivamente per le specie, gli individui e le popolazioni, come abbiamo cercato di dimostrare nel corso di tutta quanta la nostra esposizione.

Le patologie e le psicopatologie del linguaggio, se vogliono accedere al livello «mergente» delle proprietà cognitive, devono quindi, muoversi sempre sul terreno di confine tra il sostrato neuroscientifico, fondato sulla biologia delle strutture, e quello ontologico, fondato sulle eccità cognitive che circoscrivono i comportamenti collettivi e la complicata interazione semantica tra ali individui.

3.2.3. Evidenza sperimentale dell'evidenza naturale

Da un punto di vista metodologico – e considerato quanto abbiamo visto in precedenza (in particolare supra, § 3.2.1) – dovremmo, tuttavia, concludere che le posizioni espresse dall'approccio cognitivista-neuroscientifico e quelle introdotte dall'antropoanalisi e dalla psicopatologia filosofica del linguaggio obbediscano a metodi e presupposti teorici talmente diversi da rasentare l'incompatibilità, almeno per quanto riguarda lo studio delle malattie mentali. Lo sforzo delle scienze cognitive del linguaggio è tuttavia interamente concentrato sulla necessità di una sintesi teorica e metodologica che rivelì l'inconsistenza delle apparenti contrapposizioni.

Il gioco delle apparenze va fatto risalire alle artificiose distinzioni cui abbiamo accennato all'inizio di questa parte (cfr. supra, S 1 ss.). La dicotomia tra fatti materiali e fatti sociali, tra metodi osservativi e metodi interpretativi, tra dati biologici e dati linguistici è destinata a ridursi drasticamente se applicassimo coerentemente il modello evolutivo basato sull'idea delle proprietà emergenti del linguaggio (cfr. supra, S, S1.).

Si tratterebbe, infatti, di selezionare un livello di analisi di tali proprietà adeguato a superare l'idea di un «salto filogenetico evolutivo», che certamente si è manifestato nella storia degli ominidi e che ha collegato la lateralizzazione all'articolazione fonetica e sintattica, ma che, altrettanto certamente, non ha potuto determinare da solo il complesso rapporto tra il livello fisiologico e quello semantico. Si tratterebbe, cioè, di ricostruire e far emergere gli effetti di quello che è stato chiamato un secondo «salto» connesso con la lunga sperimentazione pragmatico-sociale degli usi linguistici da cui sono scaturite le proprietà emergenti estesissime mostrate oggi dalla semantica umana [Falzone 2004. 138-1471.

Da questo punto di vista la psicopatologia del linguaggio risulta un terreno d'eccellenza metodologica. Essa ha dimostrato, al di là di tutte le controversie sui dettagli che andranno comunque appianate, che la comprensione della schizofrenia ha bisogno soprattutto della comprensione del «linguaggio interiore», cioè di un livello dell'analisi semantica che Minkowski [1927] chiamava «esistenziale». e che consenta di costruire interminabili interpretazioni di indizi e inferenze inconfrontabili con quelle degli altri. Nella prassi evolutiva il sapiens ha atteso da settanta a centomila anni per trasformare la macchina articolatoria (pronta da duecento a centomila anni fa) in un dispositivo dialogico cooperativo (come abbiamo visto le prime attestazioni di usi simbolici sono comparse trentamila anni fa: Leroi Gourhan [1964a; 1964b; 1983; 1984; 1992]; sulla cooperazione linguistica cfr. anche Dunbar [1997]). Sfruttando la forza propulsiva dell'interazione verbale il linguaggio si è trasformato in un vantaggio evolutivo unico per far convergere menti diverse su sensi pubblici, e quindi su obiettivi empirici fortemente adatti a favorire la riproduzione della specie. Il linguaggio interiore con cui ci costruiamo dettagliate ontologie del mondo, cioè le nostre «modalità di esistenza», trovano nell'interazione linguistica l'unico fondamento di controllo del principio di verità. I disturbi ontologici del linguaggio colpiscono quindi direttamente quella «fonction du réel» [Janet 1903] che si è formata nell'interminabile periodo olistico dell'apprendistato semantico umano. È solo nel corso di questo frammento cruciale della storia evolutiva, e non prima, che è potuta sorgere la schizofrenia: sradicamento radicale della mente umana da qualsiasi «evidenza naturale» [Blankenburg 1971] della convenzione linguistica.

Il problema che, tuttavia, si pone a questo punto è quello di sapere se questo «secondo salto» sia definibile solo per via speculativa (immaginando, cioè, i modi di realizzazione di questa lunga gestazione sociale dell'evoluzione degli usi linguistici che avrebbe generato sia la specie-specificità della semantica sia i disturbi di natura interazionale e ontologica, della schizofrenia) oppure se possiamo fondarci oggi, con l'approccio metodologico e le tecniche sperimentali delle scienze cognitive, anche su indizi di tipo sperimentale ed empirico.

Nel rispondere affermativamente a questa domanda ci si impegna a sciogliere positivamente la riserva prima avanzata sulla possibilità di formulare una sintesi dei metodi attuali delle scienze cognitive, della psicopatologia e della filosofia del linguaggio. Si comincia, infatti, ad intravedere negli studi più recenti, e proprio grazie alle nuove metodologie di indagine, l'attenzione verso proprietà emergenti del linguaggio che sinora sono rimaste del tutto inesplorate.

Già gli studi descritti precedentemente (supra, § 2.2.3) sull'afasia hanno evidenziato la suddivisione evolutiva tra aree cerebrali più arcaiche, che fungono da filtro per la conversione di unità informative analogiche in unità di informazione evolutivamete digitali, e aree cerebrali funzionalmente superiori ormai definitivamente dedicate alla trasformazione delle strutture semantiche profonde in strutture superficiali la cui variabilità sintattica si intreccia con la variabilità storico-naturale delle lingue.

Gli studi più recenti sui potenziali evocati nei soggetti schizofrenici apportano, adesso, una nuova luce sull'esistenza di un segmento della semantica che si radicherebbe nell'attività di individualizzazione ed ontologizzazione delle categorie fonetiche, lessicali e sintattiche, cioè nella traduzione dei costrutti materiali del linguaggio in pezzi di «modalità di esistenza».

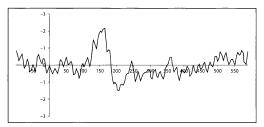
Come sembrano dimostrare questi studi [Strandburg et al. 1997; Ohta et al. 1999; Rockstroh et al. 2001; Salisbury et al. 2002; Falzone e Patti 2004], infatti, 1999; Rockstroh et al. 2001; Salisbury et al. 2002; Falzone e Patti 2004], infatti, 1991; a misurazione delle attività neurofisiologiche del cervello rivelerebbe che ad una fase di riconoscimento dei suoni, delle parole, degli ordinamenti sintattici e, infine, della focheggiatura dei significati complessivi sestandardo, seguirebbe una lunga (relativamente ai tempi di latenza neurofisiologica delle onde più tardive dei potenziali evocati) rielaborazione che avrebbe per oggetto l'individualizzazione specifica dei significati nell'universo di credenze complessive, nel sistema ontologico-ospitivo dei parlanti, sia normali che schizofrenici.

Naturalmente si tratta ancora di un'ipotesi non puramente speculativa ma certo fondata su dati empirici limitati, che dovrà essere perfezionata attraverso la messa a punto di un protocollo sperimentale che possa confermarne la validità su larga scala statistica. Si tratta, tuttavia, di una strada che vale la pena di essere percorsa, poiché dimostrerebbe come a partire dagli studi sulla schizofrenia e, più in generale, sulle psicosi si possa arrivare a delimitare una nuova, e sinora ignorata, zona delle proprietà emergenti della semantica umana che non può essere spiegata con i livelli evolutivamente precedenti di organizzazione della materia, su cui pure si radicherebbero e senza i quali neppure esisterebbero.

Appendice

Le tecniche di indagine cerebrale

L'indagine dei correlati neurali dei processi cognitivi è possibile grazie all'uso di diverse tecniche d'indagine che partendo dal classico metodo comportamentale (che valuta l'accuratezza del soggetto in una determinata prova e i relativi tempi di reazione) arrivano sino alle più sofisticate tecniche elettrofisiologiche (potenziali evocati, potenziali evocati correlati a eventi-Enrs, magnetoencefalografia-Mɛc) e di brainimaging (risonanza magnetica funzionale-Mm, tomografia a emissione positroni-Pɛr). In questa appendice abbiamo scelto di trattare i metodi più frequentemente utilizzati nelle indagini sul linguaggio, ovvero i potenziali evocati, la stimolazione magnetica transcranica e la risonanza magnetica funzionale.


1. I POTENZIALI EVOCATI (ERPS)

Tra le diverse tecniche utilizzate nelle neuroscienze, e in particolar modo in neuropsicofisiologia, la registrazione dell'attività elettrica cerebrale è uno dei metodi che si hanno a disposizione per collegare alcuni eventi fisici alle dinamiche dei processi cognitivi. La registrazione del potenziale evocato è basata in gran parte sulle stesse tecniche utilizzate per la registrazione dell'elettroencefalogramma (EEG) ma, a differenza di quest'ultimo che descrive l'attività elettrica cerebrale di base, i potenziali evocati sono un'estrazione selettiva del segnale elettroencefalografico che si registra in seguito ad una stimolazione sensoriale. Si definiscono, infatti, anche potenziali evocati evento-correlati (ERPs = Event Related Potentials) e forniscono informazioni sull'integrità delle vie nervose di conduzione.

Questa appendice è di Grazia Spitoni (Università di Roma «La Sapienza» – IRCCS Fondazione Santa Lucia, Roma), Attilio Rapisarda (Dipartimento di psicologia, Università di Milano, Bicocca) e llaria Minio Paluello (Università di Roma «La Sapienza» – IRCCS Fondazione Santa Lucia, Roma)

FC1	and the second s
FCz	
FC2	was a second sec
FC4	was the same was a second with the same of
T8	The state of the s
C5	The same of the sa
C3	was a second and the
C1	and the second s
Cz	was a second was to the second with the second with the second was to the second with the second with the second was to the second with the second with the second was to the se
C2	was a second of the second of
C4	and the same of th
C6	and the state of t
CP5	The second secon
CP3	sometime and the second of the

1.a.

1.b.

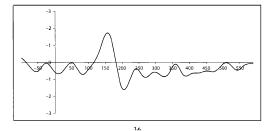


fig. 1. Tracciato Ess di base di un pool di 14 elettrodi (a). Forma d'onda caratteristica del potenziale evocato visivo, prima (b) e dopoil filtraggiol (c).

Come per l'esame elettroencefalografico, anche nella registrazione dei potenziali evocati l'applicazione di alcune piastrine metalliche – gli elettrodi (di solito in lega d'argento applicati tramite una cuffia) -, sullo scalpo in posizioni prefissate, permette di captare l'attività elettrica dei neuroni cerebrali che, passando attraverso la dura madre, il liquido cerebrospinale, le ossa craniche e la pelle dello scalpo. raggiunge l'elettrodo con un'ampiezza dell'ordine della decina di millivolt, che a sua volta viene opportunamente filtrata e amplificata. Il potenziale elettrico così ricavato è il risultato dell'attività contemporanea di moltissimi neuroni, compresi quelli in altre aree circostanti a quella in cui si vuole effettivamente registrare. Questi potenziali sono normalmente non riconoscibili in quanto hanno un voltaggio molto basso e sono mascherati dall'attività EEG (fig. 1a) Con una particolare tecnica basata sulla ripetizione degli stimoli e sovrapposizione elettronica o averaging dei singoli tracciati (fig. 1b) si riesce a filtrare il segnale dei potenziali evocati dal tracciato EEG ed ottenere la classica morfologia del notenziale evocato (fig. 1c).

I parametri che caratterizzano i potenziali evocati sono l'ampiezza (misurata in microvolt =uv) e la latenza delle onde (misurata in millisecondi = msec). Per quanto riguarda la morfologia essa è caratterizzata da una serie di picchi positivi (P) e negativi (N). Di norma il momento della presentazione dello stimolo è considerato come tempo zero per cui ogni componente ha una latenza relativa a tale tempo zero. Per esempio con P1 si indica una componente positiva con latenza di 100 msec (fig. 2).

Nella descrizione dei potenziali evocati, si è soliti distinguere le componenti primarie (dette anche esogene o sensoriali, dipendenti dallo stimolo esterno) che compaiono entro i primi 150 msec dallo stimolo, dalle componenti secondarie, dette anche endogene o cognitive (dipendenti dal processo cognitivo in atto). I potenziali evocati più frequentemente utilizzati sono i potenziali evocati visivi (VEP) (stimolo tramite un'immagine di scacchiera su un monitor, flash di luce, configurazione a forma di reticolo ecc.), i potenziali evocati somato-sensoriali (SEP) (stimolazione elettrica di un determinato nervo) e i potenziali evocati acustici (Auditory Cortical Response, ACR; stimoli uditivi tramite cuffia).

Rispetto alle componenti cognitive, sono state descritte diverse famiglie di componenti. Seguendo l'ottima revisione di Mecacci e Spinelli [1996], è ampiamente dimostrato che già intorno ai 100 msec è possibile osservare l'effetto prodotto da un compito attentivo in cui vengono elicitati processi di pattern-recognition [McGillem et al. 1981]. Ad esempio l'attenzione selettiva è in grado di evocare una componente negativa – la Processing Negativity – a una latenza assai precoce (50-100 msec) [Naatanen e Teder 1991; Naatanen 1988].

Intorno ai 200 msec compare un complesso d'onde negative (N2) generate da compiti in cui si presenta uno stimolo raro all'interno di una sequenza di stimoli molto frequenti. Queste componenti sono state studiate in compiti uditivi e sono definite Missmatch Negativity (MMN) [Pazo-Alvarez et al. 2003; Deltenre et al. 2003: Naatanen 2003: Naatanen e Escera 20001.

La P300 è una grande componente (> 10 μV) a polarità positiva la cui latenza del picco oscilla tra i 300 e i 900 msec [Linden 2005: Friston 2005: Moores et al. 2003:

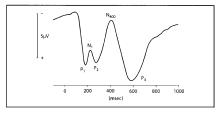


fig. 2. Grandemedia di potenzia lievo cativi sivi ottenuta da stimolazione pattern-onset. Le varie dell'essioni (picchi negativi o positivi) sono individuate da due valori: ampiezza picco-picco (in μν olt) e latenza del picco (inmsec).

Soltani 2000]. Similmente alla MMN, anche la P300 è evocata da compiti in cui stimoli stalenti (stimoli target) devono essere riconosciuti all'interno di sequenze di stimoli non-rilevanti (stimoli standard) [Clark et al. 2000]; è stato osservato che la sua ampiezza è direttamente proporzionale alla facilità di discriminazione degli stimoli target da quelli standard. In generale si rittene che la P300 venga evocata da processi quali l'attenzione selettiva e la working memory [Linden 2005]. Gli studi sul linguaggio hanno evidenziato una componente negativa a 400 msec (N400). La N400 riflette l'integrazione di processi lessico-semantici ed è seguita da una componente positiva (P600) evocata da processi sintattici di ri-analisi e riparazione [Friederici 2004, 1997]

1.1. Applicazioni cliniche dei potenziali evocati

Nonostante l'ormai indiscussa validità dei potenziali evocati nelle indagini sperimentali, questa tecnica presenta utili applicazioni anche nella clinica e nella diagnostica. I suoi molteplici usi sono egregiamente descritti in Rossini [1944]. Seguendo l'autore, il campo d'applicazione dei VEP è costituito dalle malatti demielinizzanti, come per esempio la neurite tottia ettrobulbare in cui si ossetiva un aumento delle latenze. I VEP possono essere alterati anche nelle malattie dismetaboliche (diabete mellito, ipotiroidismo, insufficienza epatica e renale), nelle patologie degenerative del sistema nervoso centrale (tra cui il morbo di Parkinson e la malattia d'Alzheimer) e nello studio di disturbi del campo visivo susseguente a lesione cerebrale (emianopsia). In campo otoneurologico i potenziali evocati acustici sono utili per la valutazione delle ipoacusie e per la differenziazione di quelle di trasmissione da quelle neurosensoriali. I potenziali acustici sono essenziali nella diamenso di iroacuste neurali da neuronoma dell'Uli nervo cranico. Lo

studio dei potenziali acustici può essere utile anche per valutare la maturazione del sistema nervoso centrale nei bambini prematuri e per orientarsi sull'andamento di un coma (maggiore è l'alterazione del segnale più grave è la prognosi) [Wang et al. 2004]. I SEP vengono utilizzati per la valutazione delle funzioni delle vie somatosensoriali (centrali e periferiche) in numerosi assessment diagnostici come nei casi di sclerosi multipla, mielopatie, lesioni focali non-demielinizzanti (tumori del midollo spinale o del tronco dell'encefalo), neuropatie, epilessia e morbo di Parkinson, Analogamente i potenziali evocati motori (PEM) sono un utile strumento d'indagine in pazienti affetti da lesioni cerebellari e spasticità muscolare.

1.2. Vantaggi e limiti della tecnica

Uno dei principali vantaggi offerti dagli ERP è che sono una tecnica non intrusiva, applicabile quindi anche a pazienti gravi e bambini. Inoltre con i potenziali evocati è possibile indagare quegli stadi dell'elaborazione dell'informazione (processi covert) solitamente non accessibili tramite le tecniche comportamentali. È una tecnica che permette un'accurata risoluzione temporale. Il maggiore dei limiti risiede nella limitata risoluzione spaziale. Un altro svantaggio consiste nell'estrema variabilità osservata sulla popolazione sana.

2. STIMOLAZIONE MAGNETICA TRANSCRANICA (Tms)

La stimolazione magnetica transcranica è una tecnica non invasiva, non dolorosa. grazie alla quale è possibile stimolare tramite un impulso magnetico esterno il sistema nervoso sia centrale sia periferico. È stata utilizzata per:

- studiare la modulazione dell'eccitabilità corticospinale in relazione a diverse condizioni sperimentali, patologie, farmaci [Avenanti et al. 2005; Mir et al. 2005];
- mappare funzionalmente diverse aree corticali [Krause et al. 2006]:
- creare lesioni funzionali transitorie [Tunink et al. 2005];
- studiare la plasticità neurale [Kew et al. 1994; Walsh et al. 1998; Rossi et al. 20041:
- studiare specifiche funzioni cognitive come la percezione [Zangaladze et al. 1999; Masur et al. 1993] l'attenzione [Ashbridge et al. 1997] e l'apprendimento [Pascual-Leon et al. 1994].

Infine si sta valutando la potenzialità della TMS nel trattamento di disturbi del movimento [Cunnington et al. 1996], dell'epilessia [Caramia etal. 1996], e nella terapia di pazienti psichiatrici [Gorge et al. 1996; Greenberg et al. 1997; Geller et al. 1997].

2.1 Il meccanismo alla base della Tus

In base al principio di induzione elettromagnetica di Faraday, un transiente campo magnetico perpendicolare al piano di una bobina (cail) induce nel tessuto corticale sottostante un campo elettrico le cui correnti ioniche abbassano il potenziale delle membrane cellulari dando il via a un processo di depolarizzazione sincrona di una circoscritta popolazione neuronale. I neuroni eccitati sono essenzialmente quelli della corteccia cerebrale ovvero quelli con assoni perpendicolari alloscalpo e sufficientemente vicini al cail, in particolare i neuroni piramidali di proiezione.



fig. 3. Specificitàspaziale e funzionaledellaT мs. Corrispondenza tra i cambiamenti di flusso emodinamico nella corteccia motoria relativi a un movimento delditosia indottodaT mssia volontario (èpresenteattivazione anche a livello dellacortecciapremotoria).

FonteSEBNER et al. (1998).

La geometria del campo elettrico indotto nel tessuto biologico dipende dalla forma, dalla localizzazione ed orientamento del coil e dalla conduttanza elettrica del tessuto. Con un coiffocale a forma di otto) ad esempio si può concentrare l'impulso generato da due bobine ottenendo una stimolazione massimale in un'area di forma circolare molto ristretta (diametro di 1 cm).

Nonostante la conoscenza di molti aspetti del meccanismo di azione della TMS e delle sue proprietà sia limitata, questo non ha impedito un suo vasto utilizzo dalla neurofisiologia clinica alle neuroscienze cognitive.

Esistono diversi paradigmi sperimentali di utilizzo della TMS; di seguito ne verranno brevemente descritti i principali. È importante considerare la sempre più attuale possibilità di interazione tra tecniche di neuroimmagine diverse (PET, IMRI, TMS, EEG, MEG) al fine di poter aggirare le limitazioni, ad esempio di risoluzione spaziale e temporale, specifiche di ogni metodica sperimentale (fig. 3).

2.2. Tms a singolo impulso

Un impulso di TMS ad alta intensità somministrato sulla corteccia motoria primaria genera dei potenziali evocati motori (MEPs) registrabili dai muscoli controlaterali al sito di stimolazione. Questo permette di misurare la soglia di eccitabilità di una popolazione di motoneuroni corticali e di determinare il tempo di conduzione motoria centrale. Se l'impulso viene somministrato invece sulle aree visive è possibile covoare fosfeni [Walsh e Cowey 2000]. L'intensità di soglia necessaria per elicitare i fosfeni fornisce una misura dell'eccitabilità della corteccia occipitale. Ad intensità maggiori è possibile sopprimere la percezione di uno stimolo visivo se presentato in una determinata finestra temporale [Marg e Rudiak 1994]. Tale soppressione permette ad esempio di stimare la durata del processamento visivo.

2.3. Tms a doppio impulso

La tecnica a doppio impulso, impiegata per studiare l'inibizione e la facilitazione intracorticale [Beckers e Homberg 1991; Chen et al. 1998], utilizza un primo impulso condizionante sotto soglia seguito da uno stimolo test sopra soglia rilasciati da uno stesso coil. La durata dell'intervallo temporale tra i due stimoli (ISI) determina l'effetto inibitorio (ISI brevi) o facilitatorio (ISI lunghi).

La TMS a doppio impulso simultaneo somministrato attraverso due coil posizionati in diverse regioni dello scalpo è stata utilizzata per confrontare i tempi di processamento di diverse regioni cerebrali e le interazioni intracorticali.

2.4. Tms ripetitiva

Nel protocollo di TMS ripetitiva (rTMS) viene somministrato un treno di impulsi magnetici di frequenza compresa tra 1 Hz ed in genere 50 Hz per una durata complessiva variabile dai pochi msec ai diversi secondi. Avviene una sommazione temporale degli effetti degli impulsi tale da introdurre un rumore casuale capace di rallentare o impedire l'elaborazione dell'informazione e quindi il funzionamento dell'area corticale interessata. La rTMS permette così di creare una lesione virtuale focale e di determinare il ruolo, non più solo in termini correlazionali. di diverse aree cerebrali nel compiere una determinata funzione. Bisogna ad ogni modo tenere presente che, a causa tra gli altri dei fenomeni di diaschisi e di plasticità, le lesioni virtuali transitorie non sono del tutto assimilabili alle lesioni acquisite presenti in pazienti con disturbi neuropsicologici.

È importante ricordare infine che l'utilizzo della TMS e in particolare della rTMS deve tenere presente la sua potenziale pericolosità [Kuiirai et al. 1993: Wassermann 19981.

3. RISONANZA MAGNETICA

3.1. Lo sviluppo della tecnica e l'analisi strutturale

Le tecniche di imaging con risonanza magnetica sono state sviluppate a partire dagli studi condotti nel campo della risonanza magnetica nucleare, un fenomeno fisico basato sulle proprietà magnetiche di alcuni nuclei atomici. In particolare, nella seconda metà degli anni Quaranta si scoprì che il nucleo dell'idrogeno, quando immerso in una specifica intensità di campo magnetico, è capace di assorbire l'energia associata a un'onda elettromagnetica a frequenza specifica, e questa capacità di assorbimento fu chiamata risonanza.

Elettroni, neutroni e protoni, le tre particelle costituenti un atomo, possiedono una proprietà di spin: la capacità di ruotare attorno al proprio asse. Ora, consideriamo l'atomo d'idrogeno e, all'interno di quest'atomo, il protone. La rotazione del protone d'idrogeno intorno al suo asse produce un campo magnetico con un polo positivo e uno negativo. In assenza di un campo magnetico esterno, questo asse è orientato casualmente nello spazio. In presenza di un campo magnetico esterno, l'asse si allinea al campo esterno. Si dice in risonanza un protone perfettamente allineato al campo magnetico esterno. Per entrare in risonanza con il campo esterno, protoni diversi ruotano intorno al proprio asse con velocità diverse. Pur allineandosi, però, l'asse potrà essere percorso da forze magnetiche che corrono nella stessa direzione delle forze del campo magnetico esterno (condizione di parallelismo al campo) o in direzione opposta (antiparallelismo al campo). Nello scanner di risonanza magnetica, oltre alla componente fissa del campo magnetico esterno, esiste una componente mobile del campo che investe l'atomo d'idrogeno a una frequenza specifica in grado di ribaltare la direzione del suo asse, da parallelo ad antiparallelo. La componente mobile oscilla continuamente facendo mutare più volte l'orientamento dell'asse del protone. Per ogni cambiamento di orientamento, un'onda elettromagnetica viene rilasciata dal protone con una frequenza specifica per il tipo di protone e per il tipo di ambiente protonico circostante. Frequenze differenti specifiche di protoni differenti ci consentono di ricevere informazioni sui vari tipi di tessuti immersi nella componente fissa del campo magnetico ed «eccitati» dalla componente mobile.

È questa la base delle *analisi strutturali* di dati acquisiti tramite risonanza magnetica.

Il nostro corpo è costituito per due terzi di acqua, e la percentuale di acqua sul totale di componenti di un tessuto varia a seconda del tessuto stesso e delle sue ventuali condizioni patologiche. Le oscillazioni indotte nei protoni di idrogeno, registrate ed elaborate da un computer, vengono tradotte in immagini. Si tratta di una trentina di immagini di «fette» encefaliche dello spessore di circa 3 millimetri che, insieme, compongono un intero volume encefalico. Sulla superficie di ciascuna fetta è possibile riconoscere zone chiare – i tessuti molli ricchi d'acqua e quindi di protoni idrogeno – e zone scure, i tessuti rigidi.

3.2. L'analisi funzionale

È noto da tempo che il cervello è organizzato in aree, ciascuna delle quali si occupa specialmente di uno dei compiti che normalmente svolgiamo: vedere, camminare, parlare ecc. Ouello che si cerca è di individuare la funzionalità delle varie zone del cervello. ossia capire quali aree vengono attivate a seconda della diversa azione che viene

Tutto il cervello è circondato da vasi che portano alle cellule l'ossigeno necessario al loro funzionamento. Quando si svolge una operazione specifica, ad esempio si alza un dito, la zona dell'encefalo che controlla il movimento di quel dito richiederà un maggiore apporto di sangue ricco d'ossigeno. Questo ossigeno è legato a una molecola. l'emoglobina, che ha al centro della sua struttura un atomo di ferro. L'emoglobina non legata all'ossigeno, deossiemoglobina, è particolarmente suscettibile ai campi magnetici per via del suo atomo di ferro deossidato, che dona all'intera molecola proprietà paramagnetiche, cioè appunto alta reattività ai campi magnetici. Nei vasi arteriosi circostanti circuiti neurali molto attivi confluisce un flusso maggiore di sangue ed emoglobina ricca d'ossigeno, che però viene rapidamente assorbita dai capillari. La deossiemoglobina invece, non viene assorbita dai capillari e si concentra maggiormente nei vasi. La maggiore reattività magnetica della deossiemoglobina fa sì che, al passaggio della componente mobile del campo magnetico, i protoni idrogeno contenuti nella molecola di emoglobina passino più velocemente dalla condizione di parallelismo al campo a quella di antiparallelismo. La capacità che l'emoglobina ha di reagire diversamente al campo a seconda che sia o meno legata all'ossigeno è alla base del segnale BOLD (Blood Oxygen Level Dependent), la cui intensità è tanto maggiore quanto maggiore sarà la differenza tra concentrazione di deossiemoglobina e quella di ossiemoglobina.

3.3. Il disegno a blocchi

Nel disegno sperimentale a blocchi, il ricercatore predispone una serie di stimoli - generalmente visivi, uditivi, tattili - temporalmente limitati all'interno di una fase detta di task che si alterna per un numero di volte con una fase di rest. All'interno della macchina di risonanza magnetica il soggetto ascolta le istruzioni trasmesse per mezzo di una cuffia. Gli stimoli visivi vengono trasmessi su microschermi montati su occhiali che il soggetto indossa dentro la macchina. L'avvio dell'esperimento coincide con l'avvio della successione delle scansioni di risonanza magnetica. La macchina acquisisce fette di encefalo a partire da quelle vicine al collo fino ad arrivare alla sommità del capo. L'acquisizione di un intero volume encefalico è ripetuta in successione continua per decine, a volte centinaia di volte durante i 30-60 minuti dell'esperimento. Le fasi di task e rest si alternano continuamente a intervalli di circa 30 secondi. Durante le fasi di task vengono proposti gli stimoli oggetto d'indagine - ad esempio, nel caso di uno studio sulla comprensione sintattica, una selezione di frasi da ascoltare e giudicare come sintatticamente corrette o errate - mentre nelle fasi di rest viene proposto un compito di controllo – ad esempio, dei toni piatti o modulati con un acuto finale. Il soggetto. nella macchina di risonanza, può rispondere agli stimoli tramite una pulsantiera.

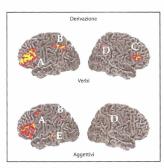


fig. 4. Aree attive durante un compito morfologico di derivazione (esaterrare-atterraggio, buono-bontà). (AlAree frontalisinistre (giro inferiore sinistro e frontalemedio giro preventrale sinistro, insula sinistra); (Bl/Aree parietalisinistre (girisopramaginaleeangolare); (") Aveef rontalidest reigiro trontalein erioredestro); ("D) Areeparietalidest reigiro angolare); (E) gangli dellabase (nucleo caudato).

Fonte:MARANGOLO et al. [2006].

per discriminare - come nel nostro caso - tra frasi corrette e frasi errate oppure, nella fase di rest del nostro esempio, tra toni piatti e toni acuti. Le scansioni dureranno per tutta la durata della successione task-rest in maniera tale che, alla fine dell'esperimento, il ricercatore avrà a disposizione un numero sufficiente di immagini che avranno registrato l'intensità del segnale BOLD nelle due condizioni, quella di rest e quella di task. Le immagini durante il task verranno contrastate con quelle acquisite durante il rest: si può pensare a questa operazione di contrasto come una sorta di sottrazione: l'attività encefalica durante il rest registra un'attività di base, mentre quella registrata durante il task comprenderà l'attività di base sommata all'attività dovuta al compito - nel nostro caso. l'analisi sintattica della frase - che il soggetto è chiamato a svolgere. Nella sottrazione di immagini acquisite

durante il task meno quelle acquisite durante il rest il ricercatore otterra una registrazione dell'attività dovuta al compito al netto dell'attività encefalica di base: nel nostro escenpio, si è interessati all'attività encefalica durante l'elaborazione sintattica della frase al netto dell'attività dovuta alla mera percezione di suoni. Il risultato di questa sottrazione di attività è reso graficamente tramite macche che sopravvivono alla sottrazione stessa. Nella figura 4, le immagini acquisite durante la fase task di un compito di lettura di parole sono state sottratte a quelle ottenute durante una fase rest consistente in un compito di controllo. Le aree sopravvisute alla sottrazione, chiamate Regions of Interest (ROI), sono successivamente sovrapposte su un encefalo ad alta risoluzione.

3.4. Il disegno evento-correlato

L'aspetto cruciale da tenere in considerazione nella pianificazione di un disegno di ricerca evento-correlato è la durata e l'evoluzione della risposta emodinamica che segue lo stimolo elaborato dal soggetto. La risposta emodinamica, chiamata in precedenza BOLD, ha un'evoluzione di circa 30 secondie raggiunge la sua massima intensità dopo circa 5 secondi dallo stimolo I primi disegni di ricerca evento-correlati distanziavano gli stimoli di 30 secondi, in modo da essere sicuri che ciascuna risposta emodinamica avesse il tempo di intensi ficarsi ed estinguersi completamente prima dell'inizio dello stimolo successivo. Nel caso di stimoli che si succedono rapidamente, succede infatti che le risposte emodinamiche si sovrappongono e si sommano tra loro. Questo limite di 30 secondi è stato tuttavia definitivamente abbandonato grazie all'applicazione di metodi statistici che rendono possibile distinguere la risposta successiva a ciascuno stimolo. In un disegno evento-correlato gli stimoli di vario tipo non possono essere semplicemente alternati, devono piuttosto avere una successione controbilanciata in maniera che ogni tipo di stimolo segua e preceda in egual frequenza tutti gli altri tipi di stimoli impiegati. Questo accorgimento ha, rispetto al disegno a blocchi, il vantaggio di rendere impossibile per il soggetto sottoposto all'esperimento la successione task-rest.

3.5. Vantaggi e limiti dell'analisi funzionale

L'analisi funzionale è una tecnica non invasiva che non impiega radiazioni ionizzanti. Questo tipo di radiazioni, alla base di altre tecniche usate in radiodiagnostica (ad esempio, raggi X, PET), sono composte di particelle e onde elettromagnetiche che urtano gli elettroni e li fanno saltare da un atomo all'altro; questo fenomeno può portare, nei viventi, a lesioni cellulari, extracellulari e genetiche. L'assenza di questo tipo di radiazioni consente l'uso dell'analisi funzionale per lo studio dell'attività encefalica nei bambini. Per lo stesso motivo, è inoltre possibile ripetere l'esame funzionale più volte sulla stessa persona.

Bisogna considerare che la registrazione dell'attività encefalica è basata su di una misura indiretta: il flusso di sangue nelle arterie cerebrali, il livello di deossiemoglobina, il livello di ematocrito. L'evoluzione del segnale BOLD collegato a queste grandezze fisiologiche ha un'evoluzione temporale relativamente lenta che limita la risoluzione temporale di questa tecnica. È inoltre difficile cogliere la sequenza delle attivazioni lungo un circuito neurale. Altre limitazioni consistono nella necessità che la testa del soggetto rimanga immobile. Infine, nella fase di selezione dei volontari per un esperimento di risonanza magnetica è necessario escludere soggetti claustrofobici e quelli che indossano un pacemaker.

BIBLIOGRAFIA ESSENZIALE

- ASHBRIDGE, E., WALSH, V. e COWEY, A., Temporalas pects of visual search studied by transcranial magnetic stimulation, in «Neuropsychologia», 1997, 35, pp. 1121-1131.
- AVENANTI, A., BUETI, D., GALATI, G. e AGLIOTI S.M., Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain, in «Nat. Neurosci.», luglio 2005, 8 (7), pp. 955-960.
- BECKERS, G. e HOMBERG, V., Impairment of visual perception and visual short term memory scanning by transcranial magnetic stimulation of occipital cortex, in «Experimental Brain Research», 1991, 87, pp. 421-432.

- CARAMIA, M.D. et al., Distinguishing forms of generalized epilepsy using magnetic brain stimulation, in «Electroencephalogr. Clin. Neurophysiol.», 1996, 98, pp. 14-19.
- CHEN, R., TAM, A., BUTEFISCH, C., CORWELL, B., ZIEMANN, U., ROTHWELL, J.C. e COHEN, L.G., Intracortical inhibition and facilitation in different representations of the human motor cortex, in ed. Neurophysiol.», dicember 1998, 80 (6), pp. 2870-288.
- CLARK, V.P., FANNON, S., LAI, S., BENSON, R. e BAUER, L., Responses to rare visualtarget and distractor stimuli using event-related fMR1, in «J. Neurophysiol.», maggio 2000, 83 (5), pp. 3133-3139.
- CUNNINGTON, R., IANSEK, R. e THICKBROOM, G.W., Effects of transcramal magnetic stimulation over supplementary motor area on movement in Parkinson's disease, in «Brain», 1996, 119, pp. 815–822.
- DELTENBE, P., COLIN, C., DACHY, B. e MANSBACH, A.L., The role of evoked potentials (EPs) in the assessment of the human central auditory nervous system (CANS), in «Acta Otorhinolarynach, Belgs. 203, 57 (4), pp. 253-266.
- DONALDSON, D.I., Parsing brain activity with fMR1 and mixed designs: what kind of a state is neuroimaging in?, in «Trends in Neurosciences», 2004, 27 (8), pp. 442-444.
- FRIEDERICI, A.D., Neurophysiological aspects of language processing, in «Clin. Neurosci.», 1997, 4 (2), pp. 64-72.
- Event-related brain potential studies in language, in «Curr. Neurol. Neurosci. Rep.», novembre 2004. 4 (6), pp. 466-470.
- FRISTON, K., A theory of cortical responses, in «Philos. Trans. R. Soc. Lond. B. Biol.Sci.», 29 aprile2005, 360 (1456), pp. 815-836.
- GELLER, V., GRISARU, N. e ABARBANEL, J. M., Slow magnetic stimulation of the prefrontal cortex in depression and schizophrenia, in «Prog. Neuropsychopharmacol. Biol. Psychiatry», 1997. 21. Dp. 105-110.
- GEORGE, M.S. et al., Daily repetitive transcranial magnetic stimulation improves mood in depression, in «Neuroreport», 1996, 6, pp. 1853-1856.
- GREENBERG, B.D. et al., Effects of prefrontal repetitive transcranial magnetic stimulation in obsessive compulsive disorders: a preliminary study, in «Am. J. Psychiatry», 1997, 154, pp. 867-869.
- HEEGER, D.J. e RESS, D., Whatdoes fMRI tellusabout neuronal activity?, in «Nature Reviews Neuroscience», 2002, 3, pp. 142-161.
- KEW, J.J. M. et al., Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation, in «J. Neurophysiol.», 1994, 72, pp. 2517-2524.
- KRAUSE, P., FORDERREUTHER, S. e STRAUBE, A., Two motor cortical brain mapping in patients with complex regional pain syndrome type 1, in «Clin. Neurophysiol.», gennaio 2006, 117 (11), pp. 169-176. «Epub» 2 dicembre 2005.
- KUJIRAÍ Ť., SATO, M., ŘOTHWELL, J.C. e COHEN, L.G., The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials, in «Electroencephalogr. Clin. Neurophysiol.», agosto 1993, 89 (4), pp. 227-234.
- LINDEN, D.E., The p300: where in the brain is it produced and what does it tell us?, in «Neuroscientist», dicembre 2005, 11 (6), pp. 563-576.
- MARANGOLO, P., PIRAS, F., GALATI, G. e BURANI, C., Functional anatomy of derivational morphology, in «Cortex», 2006, 42, in stampa.
- MARG, E. e RUDIAK, D., Phosphenes induced by magnetic stimulation over the occipital brain: Description and probable site of stimulation, in «Optometry and Vision Science», 1994, 71, pp. 301-311.
- MASUR, H., PAPKE, K. e OBERWITTLER, C., Suppression of visual perception by transcranial magnetic stimulation – experimental finings in bealthy subjects and patients with optic neuritis, in effectioencephalogic. Clin. Neurophysiolis, 1993, 86, pp. 259-267.
- MCGILLEM, C.D., AUNON, J.I. e CHILDERS, D.G., Signal processing in evoked potential research applications of filtering and pattern recognition, in «Crit. Rev. Bioeng.», 1981, 6 (3), pp. 225-265.
- MECACCI, L. e SPINELLI, D., Metodi elettrofisiologici in Neoropsicologia, in G. Denes e L.

- Pizzamiglio, Manuale di Neuronia del processi cognitivi, Bologna, Zanichelli, 1996.
- MIR, P., MATSUNAGA, K., GILLIG, F., QUINN, N.P., SIEBNER, H.R. e ROTHWELL, J.C., Dopaminergicdrugs restore facilitator: 2720:5257-010tor interactions in Parkinson disease, in «Neurology», 14 giugno 2005. 64 11 . pp. 1906-1912.
- MOORES, K.A., CLARK, C.R., HADFIELD, J.L., BROWN, G.C., TAYLOR, D.J., FITZGIBBON, S.P., LEWIS, A.C., WEBER. D.L. e GREENBLATT, R., Investigating the generators of the scalp recorded visuo-verbal P300 using cortically constrained source localization, in «Hum. Brain. Mapp.», gennaio2003, 18 (1), pp. 53-77.
- NAATANEN, R., Implications of ERP data for psychological theories of attention, in «Biol. Psychol.», giugno 1988, 26 (1-3), pp. 117-163.
- Mismatch negativity: clinical research and possible applications, in «Int. I. Psychophysiol». maggio2003, 48 (2), pp. 179-188.
- NAATANEN, R. e ESCERA, C., Mismatch negativity: clinical and other applications, in «Audiol. Neurootol, », maggio-agosto 2000, 5 (3-4), pp. 105-110.
- NAATANEN, R. e TEDER, W., Attention effects on the auditory event-related potential, in «Acta Otolaryngol. Suppl.», 1991, 491, pp. 161-167.
- OGAWA, S., LEE, T.M., KAY, A.R. e TANK, D.W., Brain Magnetic Resonance Imaging with Contrast dependent on Blood Oxygenation, in «Proc. Natl. Acad. Sci. USA», 1990, 87. nn. 9868-9872
- PASCUAL-LEONE, A., GRAFMAN, J. e HALLETT, M., Modulation of cortical motor output maps during development of implicit and explicit knowledge, in «Science», 1994, 263, pp. 1287-
- PAZO-ALVAREZ, P., CADAVEIRA, F. e AMENEDO, E., MMN in the visual modality: a review, in «Biol. Psychol.», luglio 2003, 63 (3), pp. 199-236.
- ROSSI, S. e ROSSINI, P.M., TMS in cognitive plasticity and the potential for rehabilitation, in «Trends Cogn. Sci.», giugno 2004, 8 (6), pp. 273-279.
- ROSSINI, P.M., Segnali dal Cervello, Roma, Ed. Erre, 1994.
- SIEBNER, H.R. et al., Imaging brain activation induced by long trains of repetitive transcranial magnetic stimulation, in «Neuroreport», 1998, 9, pp. 943-948.
- SOLTANI, M. e KNIGHT, R.T., Neural origins of the P300, in «Crit. Rev. Neurobiol.», 2000, 14 (3-4), pp. 199-224.
- TANK, D.W., OGAWA, S. e UGURBIL, K., Mapping the brain with MRI, in «BrainImaging», 1992, 2 (10), pp. 525-528.
- TUNIK, E., FREY, S.H. e GRAFTON, S.T., Virtual lesions of the anteri or intraparietal area disrupt goal-dependent on-line adjustments of grasp, in «Nat. Neurosci.», aprile 2005, 8 (4), pp. 505-511. «Epub» 20 marzo 2005.
- WALSH, V., ASHBRIDGE, E. e COWEY, A., Cortical plasticity in perceptuallearning demonstrated by transcranial magnetic stimulation, in «Neuropsychologia», 1998, 36, pp. 45-49.
- WALSH, V. e COWEY, A., Transcranial magnetic stimulation and cognitive neuroscience, in «Nature Rev. Neurosci.», vol. 1, ottobre 2000, pp. 73-79.
- WANG, J.T., YOUNG, G.B. e CONNOLLY, J.F., Prognosticvalue of evoked responses and eventrelated brain potentials in coma, in «Can. I. Neurol. Sci.», novembre 2004, 31 (4), pp. 438-450.
- WASSERMANN, E.M., Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation (June 5-7, 1996), in «Electroencephalogr. Clin. Neurophysiol.», 1998, 108, pp. 1-16.
- ZANGALADZE, A., EPSTEIN, C.M., GRAFTON, S.T. e SATHIAN, K., Involvement of visual cortex in tactilediscrimination of orientation, in «Nature», 1999, 401, pp. 587-590.

Riferimenti bibliografici

Riferimenti bibliografici

- ABITBOL, M.M. [1995], Speculation on posture, locomotion, energy consumption, and blood flow in early bominids, in «Gait and Posture», 1995, vol. 3, n. 1, pp. 29-37.
- ABU-ÁKEL, A. [2003a], A neurobiological mapping of theory of mind, in «Brain Research Reviews», 2003, n. 43, pp. 29-40.
- [2003b], The neurochemical hypothesis of «theory of mind», in «Medical Hypotheses», 2003, vol. 60, n. 3, pp. 382-386.
- ABU-AKEL, A. e BAILEY, A.L. [2000], The possibility of different forms of theory of mind impairment in psychiatric and developmental disorders, in «Psychologial Medicine», 2000, n. 30, pp. 735-738.
- ACKERMANN, H. e HERTRICH, I. [1997], Voice onset time in ataxic dysartbria, in «Brain and Language», 1997, n. 56, pp. 321-333.
- ADDAMS, R. [1834], An account of a peculiar optical phaenomenon seen after having looked at a moving body, in «London and Edinburgh Philosophical Magazine and Journal of Science», 1834, n. 5, pp. 373-374.
- ADOLPHS, R. [1999], Social cognition and the human brain, in «Trends in Cognitive Sciences», 1999, vol. 3, n. 12, pp. 469-479.
- AGUIARA, A. e BAILLARGEON, R. [2002], Developments in young infants' reasoning about occluded objects, in «Cognitive Psychology», 2002, n. 45, pp. 267-336
- ALBERT, M.S., BUTTERS, N. e LEVIN, J. [1979], Temporal gradients in the retrograde amnesia of patients with alcoholic Korsakoff's disease, in «Archives of Neurology». 1979. n. 36, pp. 211-216.
- ALEXANDER, M.P., NAESER, M.A. e PALUMBO, C.L. [1987], Correlations of subcortical CT lesion and aphasia profiles, in «Brain», 1987, n. 110, pp. 961-991.

- ALLEN, J. e SEIDENBERG, M.S. [1999], The emergence of grammaticality in connection ist networks, in The Emergence of Language, a cura di B. MacWhinney, II ed. Mahwah (NJ), Lawrence Erlbaum Associates.
- AMARAL, D. [2003], L'organizzazione anatomica del sistema nervoso centrale, in Principi di neuroscienze, a cura di E.R. Kandel, J.H. Schwartz e T.M. Jessel, Milano, Casa editrice ambrosiana, pp. 317-335.
- Milano, Casa editrice ambrosiana, pp. 317-333.
 AMBROSE, S.H. [2001], Paleolithic technology and human evolution, in «Science», 2001, n. 291, pp. 1748-1753.
- ANDERSON, J.R. e BOWER, G.H. [1972], Recognition and retrieval processes in free recall, in «Psychological Review», 1972, n. 79, pp. 97-123.
- ANDREASEN, N.C. [2000], Schizo frenia: the fundamentalquestions, in «Brain Research Interactive», 2000, vol. 31, pp. 106-112.
- ANDRONICO, M. [1996] (a cura di), Capire Wittgenstein, Genova, Marietti.
- ANNETT, M. [1999], The theory of agnosic right shift gene in schizophrenia and autum, in «Schizophrenia Research», vol. 39, pp. 177-182.
- [2002], No homo speciated on cerebral dominance.
 Commentaryon crow on language-sex-chromosome, http:\\psycprints.ecs.soton.ac.uk, ISSN 1055-0143
- ARENSBURG, B., TILLIER, A.M., VANDERMEERSCH, B., DUDAY, H., SCHEPARTZ, L.A. e RAK, Y. [1989], A middle paleolithic burnan byoid bone, in «Nature», 1989. n. 338, pp. 758-760.
- ARMSTRONG, S., GLEITMAN, L. e GLEITMAN, H. [1983], What some concepts might not be, in «Cognition», 1983, n. 13, pp. 263-308.
- AYEDELOTT, J., KUTAS, M. e FEDERMEIER, K.D. [2005], Perceptual and attentional factors in

- language comprehension: A domain-general approach, in Beyond Nature-Nurture: Essays in Honor of Elizabeth Bates, a cura di M. Tomasello e D. Slobin, Silver Spring (MD), Lawrence Erlbaum, pp. 281-314.
- BACKUS, J.W. [1959], The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM conference, in a Proceedings of international conference on information processings, 1959, pp. 125-132.
- BADDELEY, A.D. [1982], Your Memory. A User's Guide, London, Multimedia Publications, trad. it. La memoria. Come funziona e come usarla, Roma-Bari. Laterza. 1993.
- [1986], Working Memory, Oxford, Clarendon Press; trad. it. La memoria di lavoro, Milano, Raffaello Cortina. 1990.
- [1990], Human Memory: Theory and Practice, Boston, Allyn and Bacon; trad. it. La memoria umana. Teoria e pratica, Bologna, Il Mulino, 1995.
- [2002], Thepsychologyof memory, in Handbookof Memory Disorders, a cura di A.D. Baddeley, B.A. Wilson e M. Kopelman, II ed. Hove, Psychology Press, pp. 3-15.
- [2003a], Working memory: Looking backand looking forward, in «Nature Reviews Neuroscience», 2003, vol. 10, n. 4, pp. 829-839.
- [2003b], Working memory and language: An overview, in «Journal of Communication Disorders», 2003, vol. 3, n. 36, pp. 189-208,
- BADDELEY, A.D. e HITCH, G. J. [1994], Developments in the concept of working memory, in «Neuropsychology», 1994, 8, (4), pp. 485-493.
- BADDELEY, A.D., THOMSON, N. e BUCHANAN, N. [1975], Word length and the structure of sbort-tern memory, in «Journal of Verbal Learning and Behavior», 1975, n. 14, pp. 575-589.
- BADDELEY, A.D. e WARRINGTON, E.K. [1970], Amnesia and the distinction between long- and short-term memory, in « Journal of Verbal Learning and Verbal Behaviour», 1970, n. 9, pp. 176-189.
- BADDELEY, A.D. e WILSON, B. [1986], Amnesia, autobiographical memory and confabulation, in Autobiographical Memory, a cura di D.C. Rubin, Cambridge, Cambridge University Press, pp. 225-252.
- [1988a], Frontal amnesia and the dysexecutive syndrome, in «Brain and Cognition», 1988, n. 7, pp. 212-230.
- [1988b], Comprehension and working memory: A single case neuropsychological study, in «Journal of Memory and Language», 1988, n. 27, pp. 479-498.
- BADDELEY, A.D., WILSON, B.A. e KOPELMAN, M. [2002] (a cura di), Handbooko f Memory Disorders, II ed. Hove, Psychology Press.

- BAILLARGEON, R. [1986], Representing the existence and the location of bidden objects: Object permanence in 6- and 8-month-old infants, in «Cognition», 1986, n. 23, pp. 21-41.
- BAILLARGEON, R. e DEVOS, J. [1991], Object permanence in young infants: Further evidence, in «Child Development», 1991, n. 62, pp. 1227-1246.
- BAKER, C.L. [1979], Syntactic theory and the projection problem, in «Linguistic Inquiry», 1979, n. 10, pp. 533-581.
- BAKER, C.L. e McCarthy, J. [1981], The logical problem of languageacquisition, Cambridge (MA), MIT Press.
- BALL, P. [1999], The Self-Made Tapestry: Pattern Formation in Nature, Oxford, Oxford University Press.
- BARA, B.G. [1990], Scienza cognitiva. Un approccio evolutivo alla simulazione della mente, Torino, Bollati Boringhieri.
- BARCLAY, C.R. e WELLMAN, H.M. [1986], Accurades and inaccuracies in autobiographical memories, in «Journal of Memory and Language», 1986, n. 25, pp. 93-103.
- BARDE, L.H.F., SCHWARTZ, M.F. e BORONAT, C.B. [2006], Semanticweight and verb retrieval in aphasia, in «Brain and Language», in stampa.
- BARON-COHEN, S. [1995], Mindblindness. An Essay on Autism and Theory of Mind, New York, Allen Lane, Penguin Books, trad. it. L'autismo e la lettura della mente. Roma. Astrolabio. 1997.
- [2000], Theory of mind and autism: A fifteen year review, in Understanding OtherMinds: Perspectives from Developmental Cognitive Neuroscience, a cura di S. Baron-Cohen, H. Tager-Flusberg e D.J. Cohen, Oxford, Oxford University Press.
- [2003], The Essential Difference. Men, Women, and the Extreme Male Brain, Cambridge (MA), MIT Press, trad. it. Questione di cervello. La differenza essenziale tra uomini e donne, Milano, Mondadori, 2004.
- BARON-COHEN, S., LESLIE, A. e FRITH, U. [1985], Does the autisticchild have a «theory of mind», in «Cognition», 1985, n. 21, pp. 37-46.
- BARON-COHEN, S.O., RIORDAN, M., STONE, V., JONES, R. & PLAISTED, K. [1993], Recognition of faux pas by mormally developing children and children with Asperger syndrome or highfunctioning autism, in «Journal of Austina and Developmental Disorders», 1999, vol. 29, n. 5, pp. 407-418.
- BARSALOU, L.W. e HALE, C.R. [1993], Components of conceptual representation: From feature lists to recursive frames, in Categories and Concepts. Theoretical Views and Inductive Data Analysis, a cura di I.V. Mechelen, J. Hampton, R. Michalskie P. Theuns, London, Academic Press.

- BARTLETT, F.C. [1932-1995], Remembering. A Study in Experimentaland Social Psychology, Cambridge, Cambridge University Press, trad. it. La memoria, Milano-Franço Angeli. 1993.
- BASILE, G. (2001), Le parole nella mente. Relazioni semantiche e struttura del lessico, Milano, Franco Angeli.
- BASTIAANSE, R. e van ZONNEVELD, R. [2004], Broca's aphasia, verbs and the mentallexicon, in «Brain and Language», 2004, n. 90, pp. 198-202.
- BATES, E., BENIGNI, L., BRETHERTON, L.C. e VOL-TERRA, V. [1979], The Emergence of Symbols: Cognition and Communication in Infancy, New York, Academic Press.
- BAUM, S.R., BLUMSTEIN, S.E., NAESER, M.A. e PALUMBO, C.L. [1990], Temporal dimensions of consonant and vowel production: An acoustic and CT scan analysis of a phasic speech, in «Brain and Language», 1990, n. 39, pp. 33-56.
- BAUMAN, M.L. [1999], Autism: Clinical features and neurobiological observations, in Neurodevelopmental Disorders, a cura di H. Tager-Flusberg, Cambridge (MA), MIT Press, pp. 383-399.
- BAUMAN, M.L. e KEMPER, T.L. [1994], Neuroanatomic observations of the brain in autism, in The Neurobiology of Autism, a cura di M.L. Bauman e T.L. Kemper, Baltimore, Johns Hopkins Press, pp. 119-145.
- BEER, J.S. e OCHSNER, K.N. [2006], Social cognition: A multi level analysis, in «Brain Research», 2006, vol. 1079, n. 1, pp. 98-105.
- BENVENISTE, E. [1966], Problèmes de linguistique générale, Paris, Gallimard; trad. it. Saggi di linguistica generale, Milano, Il Saggiatore, 1971.
- BERGSON, H. [1896], Materia e memoria, in Bergson, Opere 1889-1896, Milano, pp. 141 ss.
- BERKO, J. [1958], The child's learning of english morphology, in «Word», 1958, n. 14, pp. 150-177.BERLIN, B. e KAY, P. [1969], Basic Color Terms. Their
- BERLIN, B. e KAY, P. [1969], BasicCotor Terms. Their Universality and Evolution, Berkeley, University of California Press.
 BERLUCCHI, G. e AGLIOTI, S. [1997], The body in
- BERLUCCHI, G. e AGLIOTI, S. [1997], The body in the brain: Neural bases of corporeal awareness, in «Trends in Neurosciences», 1997, n. 20, pp. 560-564.
- BERMUDEZ, J.L. [1998], The Paradox of Self-consciousness, Cambridge (MA), MIT Press.

 [2001], Nonconceptual self-conciousness and
- cognitive science, in «Synthese», 2001, n. 129, pp. 129-149.
- [2003], Thinking without Words, Oxford, Oxford University Press.
- BERNDT, R.S., HAENDIGES, A.N., BURTON, M.W. e MITCHUM, C.C. (2002), Grammatical class and imageability in aphasic word production: Their effects are independent, in «Journal of Neurolinguistics», 2002, n. 3, p. 5.

- BESSON, M. e KUTAS, M. [1993], The many facets of repetition: A cued-recall and event-related potential analysis of repeating works in same versus different sentence contexts, in «Journal of Experimental Psychology: Learning, Memory, and Cognition», 1993, n. 19, pp. 1115-1136.
- BESSON, M., KUTAS, M. e VAN PETTEN, C. [1992], An event-related potential (ERP) analysis of semantic congruity and repetition effects in sentences, in quirnal of Cognitive Neuroscience», 1992, n. 4, pp. 132-149.
- BIANCHI, C. [2004], Semantics and Pragmatics: The distinction reloaded, in The Semantic/Pragmatic Distinction, a cura di C. Bianchi, Stanford (CA), CSLI Pubblications.
- [2006], Pragmatica del linguaggio, Roma-Bari,
- BICKERTON, D. [1990], Languageand Species, Chicago, The University of Chicago Press.
- [2003], Symbol and Structure: A comprehensive framework for language evolution, in Language Evolution, a cura di M.H. Christiansen e S. Kirby, Oxford, Oxford University Press, pp. 77-93.
- BIRD, C.M., CASTELLI, F., MALIK, Ö., FRITH, U. e HUSAIN, M. (2004), The impact of extensive medial frontal lobe damage on «Theory of Mind» and cognition, in «Brain», 2004, vol. 127, n. 4, pp. 914-928.
- BLACK, M. [1979], Moreabout metaphor, in Metaphor and Thought, a cura di A. Ortony, Cambridge, Cambridge University Press.
- BLACKMORE, S. [2003], Consciousness: An Introduction, London, Hodder & Stoughton.
- BLAKEMORE, S.J., WINSTON, J. e FRITII, U. [2004], Social cognitive neuroscience: Where are we heading?, in "Trends in CognitiveSciences", 2004, vol. 8, n. 5, pp. 216-222.
- BLANKENBURG, W. [1971], Der Verlust dernaturlichen Selbstverstandlichkeit, Stuttgart, F. Enke Verlag; trad. it. La perdita dell'evidenza naturale. Un contributo alla psicopatologia delle schizofrenie paucisintomatiche, Milano, Raffaello Cortina, 1998.
- BLOCH, M. [1991], Language, Anthropology and Cognitive science, in «Man», New Series, 1991, vol. 26, n. 2, pp. 183-198.
- BLOCK, N. [1995], On a confusion about a function of consciousness, in «Behavioral and Brain Sciences», 1995, vol. 18, n. 2, pp. 227-287.
- BLONDER, L.X., PICKERING, J.E. e HEATH, R.L. [1995], Prosodic Charatacteristics of speech pre and postright bemisphere stroke, in «Brain and Language», 1995, n. 51, pp. 318-335.
- BLOOM, P. [1997], Intentionality and word learning, in «Trends in Cognitive Sciences», 1997, vol. 1, n. 1, pp. 9-11.
- [2000], How children learn the meanings of words, Cambridge (MA), MIT Press.

- [2004], Descartes' Baby: How the Science of Child Development Explains What Makes Us Human, New York, Basic Books.
- BLOOM, P. e GERMAN, T.P. [2000], Two reasons to abandon the false belief task as a test of theory of mind, in «Cognition», 2000, vol. 77, n. 1, p. 25.
- BLUMSTEIN, S.E., COOPER, W.E., GOODGLASS, H., STATLENDER, S. e GOTTLIEB, J. [1980], Production deficits in aphasia: A voice-onset time analysis, in «Brain and Language», 1980, n. 9, pp. 153-170.
- BODEN, M. e WILES, J. [2002], On learning context free and context sensitivelanguages, in «IEEE Transactions on Neural Networks», 2002, n. 13, pp. 491-493.
- BONCINELLI, E. [2002], lo sono, tu sei: L'identità e la differenza negli uomini e in natura, Milano, Mondadori.
- BOTTINI, G., CORCORAN, R., STERZI, R., PAULESU, E.S.P., SCARPA, P. e FRACKOVIAK, R.S.J. 11994]. The role of the right bemisphere in the interpretation of the figurative aspects of language. A positron emission tomography activation study, in «Brain», 1994, n. 117, pp. 1241-1253.
- BOWER, G.H., CLARK, M.C., LESGOLD A.M. e WINZENZ, D. [1969], Hierarchicalretrievalschemes in recall of categorized word list, in «Journal of Verbal Learning and Verbal Behaviour», 1969, n. 8, pp. 323-343.
- BOZZI, P. [1990], Fisica ingenua, Milano, Garzanti. BRADSHAW, J.L. [1997], Human Evolution. A neuropsycological perspective, Hove, East Sussex, Psychology Press.
- BRANDOM, R.B. [2001], Articulating Reasons, Cambridge (MA), Harvard University Press, trad. it. Articolare le ragioni. Un'introduzione all'inferenzialismo, Milano, Il Saggiatore.
- ziatimo, Milano, Il Saggiatore.
 BRAUNER, A. e. BRAUNER, F. [1978], L'expression psychotique chez l'enfant, Paris, PUF, trad. it. Illinguaggio verbale e non verbale del bambino psicotico, Roma, Armando, 1991.
- BREWER, W.F. [1986], What is autobiographical memory, in Autobiographical Memory, a cura di D.C. Rubin, Cambridge, Cambridge University Press, pp. 25-49.
- [1988], Memory for randomly sampled autobiographical events, in Remembering reconsidered Ecological and traditional approaches to the study of memory, a cura di U. Neisser e E. Winograd, Cambridge (MA), Cambridge University Press, pp. 21-90.
- [1995], What is recollectivememory?, in Remembering our Past: Studies in Autobiographical Memory, a cura di D.C. Rubin, Cambridge, Cambridge UniversityPress, pp. 19-66.
- Brown, C.M. e Hagoort, P. [1993], The processing

- nature of the N400: Evidence from masked priming, in «Journal of Cognitive Neuroscience», 1993, n. 5, pp. 34-44.
- BROWN, R.W. [1957], Words and Things, Glencoe (IL), Free Press.
- BUCKLEY, P., CALLAGHAN, E. e MULVANY, F. [1995], Basal ganglia T2 relaxion times in schizophrenia: A quantitative magnetic resonance imaging study in relation to tardive diskynesia, in «Psychiatry Research. Neuroimaging». 1995. p. 61, pp. 95-102.
- BUTTERS, N. CERMAN, L.S. [1986], A case study of the forgetting of autobiographical knowledge Implications for the study of pretrograde ammetia, in Autobiographical Memory, a cura di D.C. Rubin, Cambridge (MA), Cambridge University Press, pp. 253-275.
- BUTTERWORTH, B. [1999], The Mathematical Brain, London, Macmillan, trad. it. Intelligenza matematica, Milano, Rizzoli, 1999.
- BUTTERWORTH, B., CAMPBELL, R. e HOWARD, D. [1986], The uses of short-term memory A case study, in «Quarterly Journal of Experimental Psychologys, 1986, n. 38A, pp. 705-737.
- Bybee, J., Pagliuca, W. e Perkins, R. [1994], The evolution of Grammar: Tense, Aspect and Modality in Languages of the World, Chicago, University of Chicago Press.
- CAMAIONI, L. [2001], a cura di, Psicologia dello sviluppo dellinguaggio, Bologna, Il Mulino.
- CANTER, G.J. [1965], Speech characteristics of patients with Parkinson's disease III. Articulation, diadochokmesis, & overall speech adequacy, in «Journal of Speech & Hearing Disorders», n. 30, pp. 217-224.
- CAPLAN, D. e WATERS, G.S. [1999], Verbal working memory and sentence comprehension, in «Brain and Behavioral Sciences», 1999, vol. 1, n. 22, pp. 27, 24
- CARAMAZZA, A. e BERNDT, R. [1983], I disturbi sintattici nell'afasia, in Struttura e patologia del linguaggio, a cura di G. Gainotti, Bologna, Il Mulino, pp. 97-120.
- CARAMAZZA, A. e ZURIF, E.B. [1976], Dissociation of algorithmic and heuristic processes in language comprehension: Evidence from aphasia, in «Brain and Language», 1976, n. 3, pp. 572-582.
- CARAMAZZA, A., ZURIF, E.B. e GARDNER, H. [1978], Sentence memory in aphasia, in «Neuropsychologia», XVI, pp. 661-669.
- CAREY, J. e JUDGE, D.S. [2002], LongevityRecords. Life Spans of Mammals, Birds, Amphibians, Reptiles, and Fish. Odense University Press.
- CAREY, S. [1978], The child as word learner, in Linguistic Theory and Psychological Reality, a cura di M. Halle, J. Bresnan e G. Miller, Cambridge (MA), MIT Press, pp. 264-293.

- [1985]. Conceptual change in childhood. Cambridge (MA), MIT Press.
- CARO, T.M. e HAUSER, M.D. [1992], Is There Teaching in Nonhuman Animals?, in «Quarterly Review of Biology», 1992, n. 67, pp. 151-173.
- CAROTA, A., ANNONI, J.M., PICCARDI, L. e BOGOUSSLA-VSKY, I. [2005]. Syndromes majeurs de l'hémis phère mineur, in «EMC-Neurologie», 2005, n. 2, pp. 475-504.
- CARPENTER, P.A. e JUST, M.A. [1989], The role of workingmemory in language comprehension, in Complex Information Processing. The Impact of Herbert A Simon, a cura di D. Klahr e K. Kotovsky, Hillsdale (NJ), Erlbaum, pp. 31-68.
- CASASANTO, D. [2005], Crying «Whorf», in «Science», 2005, vol. 307, n. 5716, pp. 1721-1722. CAVALIERI, R. e CHIRICO, D. [2005], Parlare, segnare.
- Introduzione alla fisiologia e alla patologia delle lingueverbali e deisegni, Bologna, Il Mulino,
- CERMAK, L. e CRAIK, F. [1979], Levels of Processing in Human Memory, Hillsdale (NJ), Erlbaum.
- CHALMERS, D. [1996], The Conscious Mind, New York, Oxford University Press: trad. it. La mente cosciente, Milano, McGraw-Hill, 1999.
- CHAO, L.L., NIELSEN-BOHLMAN, L. e KNIGHT, R.T. [1995], Auditory event-related potentials dissociate early and late memory processes, in «Electroencephalography and Clinical Neurophysiology», 1995, vol. 2, n. 96, pp. 157-168.
- CHOMSKY, N. [1957], Syntactic structures, The Hague, Mouton: trad. it. Le strutture della sintassi. Bari. Laterza, 1970.
- [1959], A review of B.F. Skinner's «Verbal Behavior», in «Language», 1959, n. 35, pp. 26-58
- [1965]. Aspects of the Theory of Syntax, Cambridge (MA), MIT Press; trad. it. Aspetti di teoria della sintassi, in Saggi linguistici II, Torino, Bollati Boringhieri, 1970.
- [1970], Remarks on Nominalization, in Readings in English Trasformational Grammar, a cura di J. Jacobs e P. Rosenbaum, Waltham (MA), Ginn, pp. 184-221.
- [1975], Reflections on Language, New York, Pantheon Books: trad. it. Riflessioni sul linguaggio. Torino, Einaudi, 1981.
- [1981], Principles and Parameters in Syntactic Theory, in Explanations in Linguistics, a cura di N. Hornstein e D. Lightfoot, London, Longman,
- [1986], Knowledgeo f Language: Its Nature, Origine and Use, New York, Praeger; trad. it. La conoscenza dellinguaggio, Milano, Il Saggiatore, 1989.
- [1988]. Language and problems of knowledge: The Managua Lectures, Cambridge (MA), MIT Press; trad. it. Linguaggio e problemi della conoscenza, Bologna, Il Mulino, 1991.
- [1993]. A Minimalist Program for Linguistic Theory.

- in The View from Building 20, a cura di K. Hale e S.J. Keyser, Cambridge (MA), MIT Press, pp. 1-52.
- [1995], Bare Phrase Structure, in Government and Binding Theory and the Minimalist Programme. a cura di G. Webelhuth, Oxford, Blackwell, pp 383-440.
 - [2000], On nature and Language, New York, CambridgeUniversityPress.
- CHURCHLAND, P.S. e SE INOWSKI, T. [1994], The computational brain, Cambridge (MA), MIT Press.
- CIONINI, L. [1991], Psicoterapia cognitiva. Teoria e metodo dell'intervento terapeutico, Roma, La Nuova Italia Scientifica.
- CLARK, E. [1993], The Lexicon in Acquisition, Cambridge, Cambridge University Press.
- CLARK, H.H. e CLARK, E.V. [1977], Psychology and Language. An Introduction to Psycholinguistics, New York, Harcourt Brace Jovanovich
- CLARK, R.E., ZOLA, S.M. e SQUIRE, L.R. [2000], Impaired Recognition Memory in Rats after Damage to the Hippocampus, in «The Journal of Neuroscience», 2000, n. 20 (23), pp. 8853-8860.
- COHEN, N.J. e EICHENBAUM, H. [1993], Memory, Amnesia, and the Hippocampal System, Cambridge (MA), MIT Press.
- COLLINS, A.M. e LOFTUS, E. [1975]. A spreading activation theory of semantic processing, in «Psycological Review», 1975, n. 82, pp. 407-429.
- CONNELLY, A. e BALDEWEG, T. [2004], Cortical lateralization during verb generation: A combined ERP and fMR1 study, in «NeuroImage», 2004, n. 22, pp. 665-675.
- CONTRERAS, D. [2004], Electrophysiological classes of neocortical neurons, in «Neural Networks», 2004. n. 17, pp. 633-646.
- COOK, V.I. e NEWSON, M. [1996], Chomsky's Universal Grammar. An Introduction, Oxford, Basil Blackwell: trad. it. La grammatica universale. Introduzione a Chomsky, Bologna, Il Mulino, 1996.
- COOK, W.A. [1989], Case Grammar Theory, Washington (DC), Georgetown University Press.
- CORAZZA, E., FISH, W. e GORVETT, J. [2002], Who Is I, in «Philosophical Studies», 2002, n. 107, pp CORBALLIS, M.C. [2002], From Hand to Mouth: The
- Origins of Language, Princeton, New Jersey, Princeton UniversityPress.
- CORBALLIS, P.M. [2003]. Visuos patial processing and the right-hemisphere interpreter, in «Brain and Cognition», 2003, n. 53, pp. 171-176.
- CORCORAN, R., MERCER, G. e FRITH, C. [1995]. Schizophrenia, symptomatology and social inference Investigating theory of mind in people with schizophrenia, in «Schizophrenia Research», 1995, 17, pp. 5-13.

- CORKIN, S. [1968], Acquisition of motor skill after bilateral medial temporal-lobe excision, in «Neuropsychologia», 1968, n. 6, pp. 255-265.
- COULSON, S. (2000), Semantic Leaps: Frame-Shifting and Conceptual Blending in Meaning Construction, Cambridge, Cambridge University Press.
- COULSON, S., KING, J.W. e KUTAS, M. [1998], ERPs and domain specificity: Beating a straw borse, in «Language and Cognitive Processes», 1998, n. 13, pp. 653-672.
- CRAIK, F.I.M. e LOCKHART, R.S. [1972], Levels of processing: A framework in memory research, in «Journal of Verbal learning and Verbal Behaviour», 1972. n. 11. pp. 671-684.
- CRAIK, F.I.M. e Tulving, E. [1975], Depth of processing and the retention of word in the episodic memory, in «Journal of experimental psychology: General». 1975. n. 104. pp. 268-294.
- CRANE, T. [1988], The water fall Illusion, in «Analysis», 1988, 48, pp. 150-153.
- [2001], Elements of Mind. An Introduction to the Philosophy of Mind, Oxford, Oxford University Press, trad. it. Fenomeni mentali. Una introduzione alla filosofia della mente, Milano, Raffaello Cortina, 2003.
- CRELIN, E.S. [1977], The Human Vocal Tract, New York, VanguardPress.
- CREVIER, D. [1993], Al: The Tumultuous History of the Search for Artificial Intelligence, New York, Basil Blackwell.
- CROFT, W. [1991], Syntactic Categories and Grammatical Relations: The Cognitive Organization of Information, Chicago, University of Chicago Press.
- [2001], Radical Construction Grammar: Syntactic Theory in Typological Perspective, Oxford, Oxford University Press.
- CROFT, W. e CRUSE, D.A. [2004], Cognitive Linguistics, Cambridge, Cambridge University Press.
- CROVITZ, H.F. e QUINA-HOLLAND, K. [1974], Proportion of episodic memories from early childhood by years of age, in «Bullettin of the Psychonomic Society», 1974, n. 7, pp. 61-62.
- CROW, T.J. [2000], Schizophrenia as the price that Homosapiens pays forlanguage: A resolution of the central paradox in the origin of the species, in «Brain Research Reviews», 2000, n. 31, pp. 118-129.
- CROW, T. J., CROSS, A. J. e JOHNSON, J.A. [1984], Cathecolamines and schropbrenia. An assesment of the evidence, in Cathecolamines, a cura di E. Usdin, A. Carlssonn, A. Dahlstrom eJ. Engel, New York, pp. 11-20.
- CRYSTAL D. [1980], Introduction to Language Pathology, London, Edward Arnold.
- CSIBRA, G. e SOUTHGATE, V. [2006], Evidence for infants' understanding of false beliefs should not be dismissed, in «Trends in Cognitive Sciences»,

- 2006, vol. 10, n. 1, pp. 4-5.
- CULIOLI, A. [1999], Pour une linguistique de l'énonciation, vol. I, II, III, Paris, Ophrys.
- CURTISS, S. [1977], Genie: A Psycholinguistic Study of a Modern-day «Wild Child», New York, Academic Press.
- CUTLER, A., DAHAN, D. e VAN DONSELAAR, W. [1997], Prosody in the comprehension of spoken language: A literature review, in «Language and Speech», vol. 40, n. 2, pp. 141-201.
- CYBENKO, G. [1989], Approximation by superpositions of a sigmoidal function, mathematics of control, in «Signals and Systems», 1989, n. 2, pp. 303-314.
- D'AGOSTINI, F. [1997a], Analitici e continentali. Guida alla filosofia degli ultimi trent'anni, Milano, Raffaello Cortina.
- [1997b], Filosofia analitica, Torino, Paravia.
 DAMASIO, A.R. e DAMASIO, H. [1992], Brain and language, in «Scientific American», 1992, n. 267,
- pp. 88-95.

 DAMASIO, H. [1991], Neuroanatomical correlates of the aphasia, in Acquired Aphasia, a cura di M. Sarno.
- New York, Academic Press, 2001.

 DAMASIO, H., GRABOWSKI, T.J., TRANEL, D., HICHWA,
 R.D. e DAMASIO, A. [1996], A neural basis for lexical
 retrieval, in «Nature», 1996, 380, pp. 499-505.
- DANEMAN, M. e CARPENTER, P.A. [1980], Individual differences in working memory and reading, in "Journal of Verbal Learning and Verbal Behavior", 1980, n. 19, pp. 450-466.
- DANEMAN, M. e MERIKLE, P.M. [1996], Working memory and language comprehension. A metaanalysis, in «Psychonomic Bulletin and Review», 1996, vol. 4, n. 3, pp. 422-433.
- DARLEY, F.L., ARONSON, A.E. e BROWN, J.R. [1975], Motor speech disorders. Philadelphia. Saunders.
- DARWIN, C. [1871], The Descentof Man and Selection in Relation to Sex, New York, Appleton and Co.; trad. it. L'origine dell'uomo e la scelta sessuale, Milano. Rizzoli. 1997.
- DAVIDSON, D. [1984], Inquiries into Truth and Interpretation, Oxford, Oxford University Press; trad. it. Verità e interpretazione, Bologna, Il Mulino, 1994.
- DAVIDSON, R.J., JACKSON, D.C. eKALIN, N.H. [2000], Emotion, plasticity, context, and regulation: Perspective from affective neuroscience, in «Psychological Bulletin», 2000, 126, pp. 890-909.
- DAWKINS, M.S. [1988], Behavioural Deprivation. A Central Problem in Animal Welfare, in «Applied Animal Behaviour Science», 1988, n. 20, pp. 209-225
- DAWKINS, R. [1986], The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design, New York, Norton; trad. it. L'orologiato cieco, Milano, Mondadori, 2003.

- [2004], The Ancestor's Tale: A Pilgranage to the Dawn of Evolution, London, Weidenfeld & Nicol-
- DEACON, T.W. [1992], Theneuralcircuitryunderlying primate calls and human language, in Language Origins: A Multidusciplinary Approach, a cura di J. Wind, B.H. Bichakjian, A. Nocentini e B. Chiarelli, Dordrecht, Kluwer Academic Publishers.
- [1997], The Symbolic Species: The Coevolution of Language and the Brain, New York, Norton
- [2000], Evolutionary perspectives on language and brain plasticity, in «Journal of Communication Disorder», 2000. p. 33, pp. 273-291.
- DE BLESER, R. [2000], Acquisition of nouns and verbs in children and breakdown in aphasic subjects, in World Federation of Neurology: Research Group on Aphasia and Cognitive Disorders, Salvador, Brazil, Praia do Forte.
- DEHAENE, S., MOLKO, N., COHEN, L. e WILSON, A.J. [2004], Arithmeticand thebrain, in «Current Opinion in Neurobiology», 2004, 14, pp. 218-224.
- DENES, G. e PIZZAMIGLIO, L. [1996], Manuale di Neuropsicologia, Bologna, Zanichelli.
- DENIS, M., MELLET, E. e KOSSLYN, S.M. [2004], Neuroimaging of Mental Imagery (Special Issue of the European Journal of Cognitive Psychology), Hove (UK), Psychology Press.
- DENNETT, D.C. [1987], The Intentional Stance, Cambridge (MA), MIT Press; trad. it. L'atteggiamento intenzionale. Bologna. Il Mulino. 1993.
- [1996], Kinds of Minds, New York, Basic Books; trad. it. La mente e le menti, Milano, Sansoni,
- 1997.
 [2006], Breaking the Spell: Religion as a Natural Phenomenon, New York, Viking.
- DE RENZI, E., LÍOTTI, M. e NICHELLI, N. [1987], Semanticannesia with preservation of autobiography memory. A case report, in «Cortex», 1987, n. 23, pp. 575-597.
- DI NOCERA, F. [2004], Che cos'è l'ergonomia cognitiva, Roma, Carocci.
- DIESSEL, H. [1999], Demonstratives. Form, Function, and Grammaticalization, Amsterdam-Philadelphia, Benjamins.
- D'ODORICO, L. [2005], Lo sviluppo linguistico, Roma-Bari, Laterza.
- DONALD, M.W. [1993], Human cognitive evolution What we were, what we are becoming, in «Social Research», 1993, n. 60, pp. 143-170.
- [1998], Hominid enculturation and cognitive evolution, in Cognition and Material Culture. The Archaeology of External Symbolic Storage, a cura di Chenfrew, P. Mellars e C. Scarre, Cambridge, The McDonald Institute for Archaeological Research, pp. 7-17.
- Dore, J., Franklin, M., Miller, R. e Ramer, A.L. [1976], Transitional phenomenain early language

- acquisition, in «Journal of Child Language», 1976, n. 3, pp. 13-28.
- DOUPE, A.J., PERKEL, D.J., REINER, A. e STERN, E.A. (2005). Birdbrainscouldteach basalgangla research a new song, in «Trends in Neurosciences», 2005, vol. 28, n. 7, pp. 353-363.
- DROMI, E. [1987], Early lexical development, Cambridge (UK), Cambridge University Press.
- DRONKERS, N., PINKER, S. e DAMASIÓ, A.R. [2003], Il linguaggio e le afasie, in Principi di neuroscienze, a cura di E.R. Kandel, J.H. Schwartz e T.M. Jessel, Milano, Casa editrice ambrosiana, pp. 1155-1175.
- DUCHIN, L.E. [1990], The evolution of articulate speech: Comparative anatomy of the oral cavity in Pan and Homo, in «Journal of Human Evolution», 1990, n. 19, pp. 687-697.
- DUFFY, J. [1995], Motor Speech Disorders: Substrates, Differential Diagnosis, and Management, St. Louis, Mosby.
- DUMMETT, M. [1988], Ursprünge der analytischen Philosophie, Frankfurt am Main, Suhrkamp; trad. it. Alle origini della filosofia analitica, Bologna, Il Mulino, 1990.
- [1991], The relative priority of Thought and Language, in M. Dummett (a cura di), Frege and other Philosophers, Oxford, Clarendon.
- DUNBAR, R. [1997], Grooming, Gossip and the Evolution of Language, Cambridge (MA), Harvard UniversityPress.
 EAGLEMAN, D.M. [2001], Visual illusions and neuro-
- biology, in «Nature Reviews Neuroscience», 2001, n. 2, pp. 920-926.
- EBBINGHAUS, H. [1885-1964], Memory. A Contribution to Experimental Psychology, New York, Dover. ECO. U. [1997]. Kant e l'ornitorinco, Milano, Bom-
- piani.

 EDELMAN, G.M. [1987], Neural Darwinism: The Theory of Neuronal Group Selection, Oxford, Oxford UniversityPress.
- [1992], Bright Air, Brilliant Fire. On the Matter of the Mind, New York, Basic Book; trad. it., La materia della mente. Milano. Adelphi. 1993.
- EIBL-EIBESFELDT, I. [1987], Grundriss der vergleichenden Verhaltensforschung, Miinchen, Zurich; trad. it. 1 fondamenti dell'etologia. Il comportamento degli animali e dell'uomo, Milano, Adelphi, 1995.
- EICHENBAUM, H. e COHEN, N.J. [2001], From Conditioning to Conscious Recollection, Oxford, Oxford UniversityPress.
- ELLIS, N.C. e HENNELLEY, R.A. [1980], A bilingual word-length effect: Implications for intelligence testing and the relative ease of mental calculation in Welsh and English, in «British Journal of Psychology», 1980, n. 71, pp. 43-52.

- ELMAN, J.L. [1990], Finding structure intime, in «CognitiveScience», 1990, p. 14, pp. 179-221.
- [1993], Learning and development in neural networks: The importance of starting small, in «Cognition», 1993, n. 48, pp. 71-99.
- ELMAN, J.L., BATES, E., JOHNSON, M.H., KARMI-LOFF-SMITH, A., PARISI, D. e PLUNKETT, K. [1996], Rethinking Innateness. A Connectionist Perspective on Development, Cambridge (MA), MIT Press.
- ENARD, W., PRZEWORSKI, M., FISHER, S.E., LAI, C.S.L., WIEBE, V., KITANO, T., MONACO, A.P. e PÄÄBO, S. [2002], Molecular evolution of FOXP2, a gene involved in speech and language, in «Nature», 2002, n. 418, pp. 869-872.
- n. 416, pp. 809-8012.
 ETTLINGER, G. [1981], The relationship between metaphorical and cross-modal abilities: Failure to demonstrate metaphorical recognition in chimpanzees capable of cross-modal recognition, in «Neuropsychologia», 1981, vol. 19, n. 4, pp. 583-586.
- EVANS, G. [1982], The Varietes of Reference, a cura di J. McDowell, Oxford, Clarendon Press.
- FALK, D. [1975], Comparative anatomy of the larynx in man and the chimpantee: Implications for language in Neanderthal, in «American Journal of physical Anthropology», 1975, n. 43, pp. 123-132.
- FALZONE, A. [2004a], Filosofia del linguaggio e psicopatologia evoluzionista, Soveria Mannelli, Rubbettino.
- [2004b], Genetica e linguaggio, in «Reti, linguaggi, saperi», n. 1, pp. 189-232, (numero monografico, a cura di E. Assenza, D. Chiricò e P. Perconti, Logica, ontologica, linguistica Logic, Ontology, and Linguistics, Cosenza, Rubbettino).
- FALZÓNE, A. e PATTI, T. (2004). Il contributo delle neurosciente a uma «semantica esistenziale» schisofremia e poienziali evocati, in Signi ficare e comprendere: la semantica del linguaggio verbale. Atti dell'XI Congresso nazionale. Milano 1618. settembre 2004, accuradi A. Frigerio e S. Raynaud, 2005, Roma, Aracne Editrice, pp. 289-306.
- 2005, Roma, Aracne Editrice, pp. 289-306.
 FAUCONNIER, G. [1985], Mental Spaces, Cambridge, Cambridge University Press.
- FAUCONNIER, G. e TURNER, M. [2002], The Way We Think, New York, Basic Books.
- FEDERMEIER, K.D. e KUTAS, M. [2000], Il linguaggio nel cervello, in Psucofisiologia Cognitiva. I substrati neuro-funzionalidella mente umana, a cura di A.M. Proverbio e A. Zani, Roma, Carocci, pp. 291-326 [ripubblicato in inglese in «Centerfor Research in LanguageNewsletter», 12 (3)].
- FEIGENSON, L., DEHAENE, S. e SPELKE, E. [2004], Core systems of number, in «Trends in Cognitive Sciences», 2004, vol. 8, n. 7, pp. 307-315.
- FELDMAN, J.A. e BALLARD, D.H. [1982], Connectionist

- models and their properties, in «Cognitive Science», 1982, n. 6, pp. 205-254.
- FELDMAN, J.A., LAKOFF, G.A.S. eWEBER, S.H. [1990], Miniature Language Acquisition: A Touchstone for Cognitive Science, Berkeley (CA), International Computer Science Institute.
- FERRETTI, F. [1998], Pensare vedendo. Le immagini mentali nella scienza cognitiva. Roma. Carocci.
- [2005], Funzioni e genesi dell'inguaggio, in Comumicazione e scienza cognitiva, a cura di F. Ferretti e D. Gambarara, Roma-Bari, Laterza, pp. 3-33.
- [2006], The social mind, in Cartographies of the Mind, a cura di M. Marraffa, M. De Caro e F. Ferretti. Dordrecht. Kluwer.
- FIEBACH, C. J., SCHLESEWSKY, M., LOHMANN, G., VON CRAMON, D.Y. FRIEDERICI, A.D. (2005), Revisiting the role of Braca's area in sentence processing: Syntactic integration versus syntactic working memory, in «Human Brain Mapping», 2005, n. 24, pp. 79-91.
- FILLMORE, C. [1968], The case for case, in Universals in linguistic theory, a cura di E. Bach e R.T. Harms, New York, Holt, Rinehart and Winston,
- [1985], Frames and the semantics of understanding, in «Quaderni di semantica», 1985, n. 6, pp. 222-
- [1987], Fillmore's case grammar: A reader, Julius GroosVerlag
- FILLMORE, C.J., KAY, P. e O'CONNOR, M.K. [1988], Regularity and idiomaticity in grammatical constructions: The case of let alone, in «Language», 1988, n. 64, pp. 501-538.
- FINE, C., LUMSDEN, J. e BLAIR, R. J.R. [2001], Dissociation between «theory of mind» and executive functions in a patient with early left amygdala damage, in «Brain», 2001, n. 124, pp. 287-298.
- FISHER, R.P. e CRAIK, F.I.M. [1977], Interaction between encoding and retrieval operations in cued recall, in «Journal of Experimental Psychology: Human Learning and Memory», 1977, n. 3, pp. 701-711.
- FISHER, S.E. [2005], On Genes, Speech, and Language, in «New England Journal Medicine», 2005, vol. 353, n. 16, pp. 1655-1659.
- FITCH, W.T.S. [1994], Vocal Tract Length Perception and the Evolution of Language, PhD Thesis, Brown University.
- [1999], Acoustic exaggeration of size in birds by tracheal clongation: Comparative and theoretical analyses, in «Journal of Zoology», vol. 248, pp. 31-49.
- [2000], The evolution of speech: A comparative review, in «Trends in CognitiveSciences», vol. 4, n.7, pp. 258-267.
- [2002a], Comparative vocal production and the

- evolution of speech: Reinterpreting the discent of the larynx, in The Transition to Language, a cura di A. Wray, Oxford, Oxford University Press, pp. 21-45.
- [2002b], Primate vocal production and its implications for auditory research, in Primate Audition: Ethology and Neurobiology, a cura di A. Ghazanfar, Boca Raton (FL), CRC Press, pp. 87-108.
- FITCH, W.T.S. e GIEDD, J. [1999], Morphology and development of the human vocal tract. A study usingMRI, in «Journal of the Acoustical Society of America», 1999, n. 106, pp. 1511-1522.
- FITCH, W.T., HAUSER, M.D. e CHOMSKY, N. [2005], The evolution of the language faculty: Clarifications and implications, in «Cognition», vol. 97, n. 2, pp. 179-210.
- FITCH, W.T.S. e REBY, D. [2001], The descended larynx is not uniquely human, in «Proceedings of the Royal Society, Biological Sciences», n. 268, pp. 1669-1675.
- FLOURNOY, Th. [1900], Des Indes à la planète Mars, Genève.
- FODOR, J. [1983], The modularity of mind, Cambridge (MA), MIT Press; trad. it. La mente modulare, Bologna, Il Mulino, 1988.
- [1998], Concepts. Where Cognitive Science Went Wrong, Oxford, Clarendon Press.
- [2000], The Mind Doesn't Work That Way, Cambridge (MA), MIT Press; trad. it. La mente non funziona così. La portata e i limiti della psicologia computazionale. Roma-Bari. Laterza. 2001.
- FODOR, J. e PYLYSHYN, Z. [1988], Connectionism and cognitivearchitecture: A critical analysis, in «Cognition», 1988, n. 28, pp. 3-71.
- FORDE, E. e HUMPHREYS, G. [2002], Category specificity in brain and mind, London, Psychology Press.
- FOSS, D.J. e CAIRNS, H.S. [1970], Some effects of memory limitation upon sentence comprehension and recall, in «Journal of Verbal Learning and Verbal Behavior», 1970, n. 9, pp. 541-547.
- FOUTS, R. e TUKEL MILLS, S. [1997], Next o f Kin. What Chimpanzees Have Taught Me about Who We Are (introduzione di). Goodally, William Morrow & Company, trad. it. La scuola delle scimmie. Come ho insegnato a parlare a Washoe, Milano, Mondadori, 1999.
- FREGE, G. [1892], Über Sinn und Bedeutung, in «Zeitschrift für Philosophie und philosophische Kritik», 1892, 100; trad. it. Senso e significato, in idem, Senso, funzione e concetto, Roma-Bari, Laterza. 2001.
- FRIEDERICI, A.D. e KOTZ, S.A. [2003a], The brain basis of syntactic processes: Functional imaging and lesion studies, in «NeuroImage», 2003, n. 20, pp. S8-S17.

- [2003b], Electrophysiology of normal and pathological language processing, in «Journal of Neurolinguistics», 2003. p. 16, pp. 43-58.
- FRISCH, K. von [1965], Tanzsprache und Orientienung der Bienen, Springer Verlag, Berlin.
- [1971], Bees. Their Vision, Chemical Senses and Language, Ithaca (NY), Cornell University Press; trad. it. Il linguaggio delle api, Torino, Bollati Boringhieri, 1976.
- FRISCH, S., KOTZ, S.A., VON CRAMON, D.Y. e FRIE-DERICI, A.D. [2003], Wby the P600 is not just a P300: The role of the basal ganglia, in «Clinical Neurophysiology», 2003, n. 114, pp. 336-340.
- FRITH, Ch.D. [1992], The Cognitive Neuropsychology of Schizophrenia, London, Lawrence Erlbaum; trad. it. Neuropsicologia della schizofrenia, Milano, Raffaello Cortina, 1995.
- FRITH, U. [1989], Autism. Explaining the Enigma, Oxford-Cambridge; trad. it. L'autismo. Spiegazione di un enigma, Bari, Laterza, 1996, nuova ed. riveduta2005.
 - [1997], The neurocognitive basis of autism, in «Trends in Cognitive Sciences», 1997, vol 1, n. 2, pp. 73-77.
- [2001], Mind blindness and the brain in autism, in «NeuronVolume», 2001, vol. 32, fasc. 6, n. 20, pp. 969-979.
- FRITH, U. e FRITH, Ch.D. [2001], Thebiological basis of socialinteraction, in «Current direction in Psychological science», vol. 10, n. 2001, pp. 151-188.
- [2006], How we predict what other people are going to do, in «Brain Research», 2006, n. 1079, pp. 36-46.
- FRITH, U., PERNER, J., LESLIE, A.M. e LEEKAM, S. [1989], Exploration of the autistic child's theory of mind. Knowledge, belief and communication, in «ChildDevelopment», 1989, n. 60, pp. 689-700. FUNNELL M.G., CORBALLIS, P.M. e GAZZANIGA.
- M.S. [2001], Hemispheric processing asymmetries: Implications for memory (TENNET XI), in «Brain and Cognition», 2001, n. 46, pp. 135-139. GABORA, L. [2005], Mind: What Archaeology Can Tell Us about the Origins of Human Cognition, in
- Handbook of Theories and Methods in Archaeology, Walnut Creek (CA), Altamira Press. GADAMER, H.G. [1960], Wahrheit und Methode,
- Tübingen; trad. it. Verità e metodo, Milano, Bompiani, 1983.
- GALLAGHER, H.L. e FRITH, C.D. [2002], Imaging the intentional stance, in «NeuroImage», 2002, 16, pp. 814-821.
- [2003], Functional imaging of «theory of mind», in «Trends in Cognitive Sciences», 2003, vol. 7, n. 2, pp. 77-83.
- GALLESE, V. [2003], Neuroscienza delle relazioni sociali, in La mente de glialtri. Prospettiveteoriche

- sull'autismo, a cura di F. Ferretti, Roma, Editori Riuniti, pp. 13-43.
- GALLESE, V. e GOLDMAN, A. [1998], Mirror neurons and the simulation theory of mind-reading, in «Trends in CognitiveScience», 1998, vol. 2, n. 12, pp. 493-501.
- GALTON, F. [1880], Statistics of mental imagery, in «Mind», 1880, n.5, pp. 301-318.
- GARDNER, H. [1985], The Mind's New Science, New York, Basic Books; trad. it. La nuova scienza della mente. Storia della rivoluzione cognitiva, Milano, Feltrinelli, 1988.
- GASSER, M. e SMITH, L.B. [1998], Learning nouns and adjectives: A connectionist account, in «Language and Cognitive Processes», 1998, n. 13, pp. 269-306.
- GAUTHIER, I. e LOGOTHETIS, N. [2000], Is face recognition not so unique after all?, in «Cognitive Neuropsychology», 2000, n. 17, pp. 125-142.
- GAUTHIER, I. e NELSON, C. [2001], Thedevelopment of face expertise, in «Current Opinion in Neurobiology», 2001, n. 11, pp. 219-224
- GAZZANIGA, M. [1998], The Mind's Past, Berkeley, University of California Press: trad. it. La mente inventata. Le basi biologiche dell'identità e della coscienza, Milano, Guerini e Associati, 1999.
- GAZZANIGA, M.S. [2005], The Ethical Brain, New York-Washington, Dana Press; trad, it, La mente etica, Torino, Codice, 2006.
- GAZZANIGA, M.S., ELIASSEN, I.C., NISENSON, L., WESSUGER, C.M. e BAYNES, K.B. [1996], Collaboration between the hemispheres of a callosotomy patient-emgerging right hemisphere speech and the left brain interpreter, in «Brain», 1996, n. 119, pp. 1255-1262
- GEE, H. [1999]. Deep Time. Cladistics. The Revolution in Evolution, London, Fourth Estate; trad. it. Tempo profondo, Antenati, fossili, pietre, Torino, Einaudi, 2006
- GELMAN, S.A. e COLEY, J.D. [1991], Language and categorization: The acquisition of natural kind terms, in Perspectives on Language and Thought, Interrelations in Development, a cura di S.A. Gelman e I.P. Byrnes, Cambridge, Cambridge University Press.
- GERSKOFF-STOWE, L. e SMITH, L. [1997], A curvilinear trend in naming errors as a function of early vocabularygrowth, in «Cognitive Psychology», 1997, n. 34, pp. 37-71.
- GIBBS, R. [1994]. The Poetics of Mind: Figurative Thought, Language, and Understanding, Cam-
- bridge, Cambridge University Press. GIVON, T. [1979], On Understanding Grammar, New York, Academic Press.
- [2005], Context as Other Minds: The Pragmatics of Sociality, Cognition and Communication, Amsterdam e Philadelphia (PA), John Benjamins.

- GLUCKSBERG, S. [2004]. On the Automaticity of Pragmatic Processes: A Modular Proposal, in Experimen tal Pragmatics, a cura di I.A. Noveck e D. Sperber. Houndmills e New York, Palgrave Macmillan.
- GLUCKSBERG, S., KREUTZ, R. e RHO, S. [1986], Context can constrain lexical access. Implications for interactive models of language comprehension, in «Journal of Experimental Psychology», 1986, n. 12. pp. 323-335.
- GOLD, E.M. [1967]. Language identification in the limit, in «Information and Control», 1967, p. 10. pp. 447-474.
- GOLDBERG, A.E. [1995], Constructions: A Construction Grammar Approach to Argument Structure. Chicago, University of Chicago Press.
- [2003]. Constructions: A new theoretical approach to language, in «Trends in Cognitive Sciences», 2003, vol. 5, n. 7, pp. 219-224.
- GOLDFIELD, B.A. e RETZNICK, J.S. [1990], Early lexical acquisition: Rate, content, and the vocabulary spurt, in «Journal of Child Language», 1990, n. 17. pp. 171-183.
- GOODENOUGH, C., ZURIF, E. e WEINTRAUB, S. [1977], Aphasic's attention to grammatical morphemes, in «Language and speech», 1977, XX, pp. 11-19.
- GOODMAN, N. [1978], Waysof Worldmaking, Indianapolis-Cambridge, Hackett Publishing Company, trad. it. Vedere e costruire il mondo. Roma-Bari. Laterza, 1988.
- GOPNIK, M. [1990]. Feature-blind grammar and dysphasia, in «Nature», 1990, n. 344, p. 715.
- GORDON, I.K. e DELL, G.S. [2003]. Learning to divide the labor: An account of deficits in light and heavy verb production, in «Cognitive Science», 2003, vol. 27, n. 1, pp. 1-40.
- GORDON, P. [2004], Numerical cognition without words: Evidence from Amazonia, in «Science», 2004, n. 15, pp. 496-499.
- [2005], Response a Casasanto, in «Science», 2005. vol. 307, n. 5716, pp. 1721-1722.
- GORDON, P.C., HENDRICK, R. e FOSTER, K. [2000]. Language comprehension and probe-list memory, in « Journal of Experimental Psychology: Learning. Memory and Cognition», n. 26, pp. 766-775.
- GORDON, P.C., HENDRICK, R. e JOHNSON, M. [2001]. Memory interference during language processing, in «Journal of Experimental Psychology: Learning, Memory and Cognition», 2001, n. 27, pp. 1411-1423.
- GORDON, P.C., HENDRICK, R. e LEVINE, W.H. [2002], Memory-load interference in syntactic processing, in «Psychological Science», 2002, n. 13, pp. 425-430.
- GORDON, R. [1995]. Simulation without introspection or inference from me to you, in Mental Simulation: Evaluations and Applications, a cura di M. Davies e T. Stone, Oxford, Blackwell,

- [1996], «Radical» simulationism, in Theories of Theories of Mind, a cura di P. Carruthers e P. Smith. Cambridge, Cambridge University Press.
- GOTTESMAN, I.I. [1991], Schizofrenia Genesis, New York, W.H. Freeman.
- GOTTESMAN, I.I. e KIMLING, L.E. [2001], Family and twin strategies as a head start in defining prodromes and endophenotypes for hypothetical early interventions in schizophrenia, in «Schizophrenia Research», 2001, 51, pp. 93-102,
- GOTTESMAN, I.I., SUBOTNIK, K.L., ASARNOW, R.F., NUECHTERLEIN, K.H., FOGELSON, D.L., THORPE, T.I., PAYNE, D.L., GIANNINI, C.A., KUPPINGER, H.E., TOROUATO, R.D. e MINTZ, I. [2005], MMPI vulnerability indicators for schizophrenia and Attention deficit disorder: UCLA family study of biological parents of offspring with childhood-onset schizophrenia or ADHD, in «Behavior Genetics», vol. 35, n. 2, March 2005, pp. 159-175.
- GREENFIELD, P.M. [1991], Language, tools, and Brain. The ontogeny and phylogeny of hierarchically organized sequential behavior, in «Behavior and Brain Science», 1991, n. 14, pp. 531-595.
- GREGORY, R. [1998]. Eve and Brain: The Psychology of Seeing, Princeton (NI), Princeton University Press; trad. it. Occhio e cervello. La psicologia del vedere. Milano, Raffaello Cortina, 1998.
- GRÈZES, J., COSTES, N. e DECETY, J. [1999], The effects of learning and intention on the neural network involved in the perception of meaningless actions. in «Brain», 1999, n. 122, pp. 1875-1887.
- GRICE, P.H. [1957], Meaning, in «The Philosophical Review», 1957, vol. 66, n. 3, pp. 377-388.
- [1989], Studies in the Way of Words, Cambridge (MA), Harvard University Press; trad. it. parziale Logica e conversazione, Bologna, Il Mulino, 1993.
- GRIFFIN, D.R. [1992], Animal Minds, Chicago, The University of Chicago Press; trad. it. Menti animali, Torino, Bollati Boringhieri, 1999.
- GRODZINSKY, Y. [2000], The neurology of syntax: Language use without Broca's area, in «Behavioral and Brain Sciences», 2000, n. 23, pp. 1-71.
- [2006], Syntactic dependencies as memorized sequences in the brain, in «Canadian Journal of Linguistics special 50th anniversary issue», in stampa.
- GRODZINSKY, Y. e AMUNTS, K. [2006], Broca's Region, Oxford, Oxford University Press.
- GRODZINSKY, Y., BEN-SHACHAR, M., HENDLER, T., KAHN, I. e BEN-BASHAT, D. [2003], The Neural Reality of Syntactic Transformations: Evidence From Functional Magnetic Resonance Imaging, in «Psychological Science», 2003, vol. 14, n. 5, pp. 433-440.
- GROOT, Y., WILSON, B.A., EVANS, J.J. e WATSON, P. [2002], Prospective memory functioning in people with and without brain injury, in «Journal of the

- International Neuropsychological Society», 2002, n. 8, pp. 645-654.
- GUNTHER, Y.H. (2001). Content. Illusion, Partition, in «Philosophical Studies», 2001, vol. 102, n. 2, DD. 185-202
- GUNTER, T.C., WAGNER, S. e FRIEDERICI, A.D. [2003], Working memory and lexical ambiguity resolution as revealed by ERPs: A difficult case for activation theories, in «Journal of Cognitive Neuroscience». 2003, n. 15, pp. 643-657.
- GUR, R. [1977], Correlates of conjugate lateral eye movements in man, in Lateralization in nervous system, a cura di S. Harnad e R.W. Doty, New York, Academic Press, pp. 261-281.
- HAKEN, H. [1978], Synergetics. An introduction, nonequilibrium phase transitionsand self-organization in physics, chemistry and biology, Berlin, Springer Verlag.
- HALLER, R. [1981], Die gemeinsame menschliche Handlungsweise-Symposium von Rom 1979, a cura di R. Haller, V.A. Hölder, A. Pichler e F. Tempsky. Wien, pp. 57-68.
- [1984], Lebensform oder Lebensformen?, in «Grazer Philosophische Studien», 1984, n. 21, pp. 55-63.
- HAMPTON, J. [1993], Prototype Models of Concept Representation, in Categories and Concepts. Theoretical Views and Inductive Data Analysis, a cura di L.V. Mechelen, J. Hampton, R. Michalski e P. Theuns, London, Academic Press.
- HANSEN, A.H., CHILDRESS, D.S. e KNOX, E.H. [2004]. Roll-over shapes of human locomotor systems: Effects of walking speed, in «Clinical Biomechanics», 2004, n. 19, pp. 407-414.
- HAPPÉ, F.G.E. [1993], Communicative competence and theory of mind in autism: A test of relevance theory, in «Cognition», 1993, n. 48, pp. 101-119.
- HARNAD, S. [1990], Symbol grounding problem, in «Physica» D, 1990, n. 42, pp. 335-346.
- HARRIS, I.C. [2003], Social neuroscience, empathy, brain integration, and neurodevelopmental disorders, in «Physiology and Behavior», 2003, vol. 79, n. 3, pp. 525-531.
- HAUSER, M.D. [1997], The evolution of communication, Cambridge (MA), MIT Press.
- [2000], Wild Minds, New York, Henry Holt; trad. it. Menti selvagge, Roma, Newton & Compton, 2002.
- HAUSER, M.D., CHOMSKY, N. e FITCH, W.T. [2002]. The faculty of language: What is it, who has it, and how did it evolve?, in «Science», 2002, n. 298, pp. 1569-1579.
- HAUSER, M.D. e SPELKE, E. [2004], Evolutionary and developmental foundations of human knowledge, in «The Cognitive Neurosciences III» (Ed. M. Gazzaniga), Cambridge, MIT Press.
- HAYES, C. [1951], The Ape in Our House, New York, Harper.

- HEAL, J. [1998], Co-cognition and off-line simulation. Two ways of understanding the simulation approach, in «Mind and Language», 1998, vol. 13, n. 4, pp. 477-498.
- HEBB, D.O. [1949], The organization of behavior, New York, John Wiley.
- HEIBECK, T. e MARKMAN, E. [1987], Word learning in children: An examination offast mapping, in «Child Development», 1987, n. 58, pp. 1021-1034.
- HEIDEGGER, M. [1947], Platons Lehre von der Wahrheit. Mit einem Brief über den Humanismus, Bern; trad. it. Lettera sull'umanismo, in «Segnavia», Milano, Adelphi, 1987.
- [1959], Unterwegs sur Sprache, Pfulligen, Günther Neske; trad. it. In cammino verso il linguaggio, Milano, Mursia, 1993.
- HEILMAN, K.M. e SCHOLES, R.T. [1976], The nature of comprehension errors in Broca's. Conduction, and Wernicke's aphasic, in «Cortex», 1976, XII, n. 3, pp. 259-265.
- HEIM, J.L., BOÉ, L.J. e ABRY, C. [2002], La parole à la portée du conduit vocal de l'homme de Neandertal. Nouvelles recherches, nouvelles perspectives, in «Académie des sciences», 2002, n. 1, pp. 129-134. HERDER, G. [1770], Abbandlung über den Ursprung.
- FIERDER, G. [1770], Abbandumg wer den Ursprung der Sprache, in Herders sämlliche Werke, a cura di B. Suphan, 1877-1913, nuova ed. Hildesheim, Olms, vol. V; trad. it. Saggio sull'origine del linguaggio, a cura di A.P. Amicone, Parma, Pratiche Editrice, 1995.
- HESSE, M.B. [1966], Models and Analogies in Science, Notre Dame (In.), University Notre Dame Press; trad. it. Modelli e analogie nella scienza, Milano, Feltrinelli, 1980.
- HIETANEN, J.K. e PERREIT, D.I. [1993]. A role of expectation in visual and sacille processing suthin the temporal cortex, in Brain Mechanisms of Perception and Memory: From Neuron to Behavior, a curs at IT. 70, no. 18. Squite, M.E. Raichle, D.I. Perret e M. Fukuda, New York, Oxford University Press, pp. 83-103.
- HIGHLEY, J.R., ESIRI, M.M., McDonALD, B., CORTINA-BORJA, M., COOPER, S.J., HERRON, B.M. e CROW, T.J. [1998]. Anomalies of cerebral asymmetry in schizophrenia interact with gender and age of onset: A post-mortem study, in «Schizophrenia Research», 1998, n. 34, pp. 13-25.
- HODGKIN, A.L. e HUXLEY, A.F. [1952], A quantitative description of ion currentsand its applications to conduction and excitation in nerve membranes, in «Journal of Physiology», 1952, n. 117, pp. 500-544.
- HORNIK, K., STINCHCOMBE, M. e WHITE, H. [1989], Multilayer feedforward networks are universal approximators, in «Neural Networks», 1989, n. 2, pp. 359-366.

- HOUGHTON, P. [1993], Neanderthal supralaryngeal vocal tract, in «American Journal of Physical Anthropology», 1993, n. 90, pp. 139-146.
- HUANG, M.S. [1983], A developmental study of children's comprehension of embedded sentences with and without semantic constraints, in «Journal of Psychology», 1983, n. 114, pp. 51-56.
- HUMÁN AGEING GENOMIC RESOURCES (HAGR), DE MAGALHAES, J.P., COSTA, J. e TOUSSAINT, O. [2005], HAGR. The Human Ageing Genomic Resources, in «Nucleic Acids Research», 2005, vol. 33, Database issue, D537-543.
- HUMBOLDT, W. von [1821], Über die Aufgabe des Geschichtsschreibers, in Wilbelm own Humboldis Gesammelte Schriften, a cura di A. Leitzmann, B. Gebhardte W. Richter, Berlin, B. Behr, 1903-1906, vol. 4, pp. 37-6; trad. it. 30 comptio dello Merker, Roma, Editori Runti, 1974, pp. 193-210.
- HUMPHREY, K., TEES, R.C. e WERKER, J. [1979], Auditory-visual integration of temporal relations in infants, in «Canadian Journal of Psychology», 1979. n. 33, DD 347-352.
- Humphrey, N. Skoyles, J.R. e Keynes, R. [2005], Human hand-walkers: Five siblings who never stood up, in «lse research on line», Discussion Papers, http://eprints.lse.ac.uk
- HUMPHREYS, E.M.E. e FORDE, E.M.E. [2001], Category-specific deficits: A major review and presentation of the Hierarchical Interactive Theory (Hir), in «Behavioural and Brain Sciences», 2001, n. 24, pp. 453-465.
- HUMPREYS, M., BAIN, J.D. e PIKE, R. [1989], Different ways to cue a coberent memory system: A theory of episodic, semantic and procedural tasks, in «Psychological Reviews, 1989, n. 96, 2, pp. 208-233.
- HURST, J.A., BARAITSER, M., AUGER, E., GRAHAM, F. e NOREL, S. (1990], An extended Family with a Dominantly Inbarried Speech Disorder, in «Developmental Medicine and Child Neurology», 1990, n. 32, pp. 352-355.
- IACOBONI, M., WOODS, R.P., BRASS, M., BEKKERING, H., MAZZIOTTA, J.C. e RIZZOLATTI, G. [1999], Cortical mechanisms of human imitation, in «Science», 1999, n. 286, pp. 2526-2528.
- IRIGARAY, L. [1985], Parler n'est jamais neuter, Paris, Les éditions de Minuit; trad. it. Parlare non è mai neutro. Roma. Editori Riuniti. 1992.
- ITARD, J.M.G. [1801-1806], Mémoire sur les premiers développements de Victor de l'Aveyron (1801), e Rapport sur les nouveaux développements de Victor de l'Aveyron (1806), in L. Malson, Les enfants sauvages, 1964, Paris, pp. 117-246.
- [1825], Mémoire sur quelques fonctions involontaires des appareils de la locomotion, de l'appréhension et de la voix, in «Archives Générale de Médicine». 1825, n. 8, p. 1825.

- JACKENDOFF, R. [1977], X' Syntax: A Study of Phrase Structure, Cambridge (MA), MIT Press.
- [1990], Semantic structures, Cambridge (MA), MIT Press.
- [2002], Foundations of Language. Brain, Meaning, Grammar, Evolution, Oxford, Oxford University Press.
- JACKENDOFF, R. e PINKER, S. [2005], The nature of the language faculty and its implications for evolution of language, in «Cognition», vol. 97, n. 2, pp. 211-225.
- JACOBY, L. L. e WITHERSPOON, D. [1982], Remembering without awareness, in «Canadian Journal of Psychology», 1982, n. 36, pp. 300-324.
- JAMES, W. [1890], The Principles of Psychology, New York-Holt, Rinehart-Winston; trad. it. Principii di psicologia, Milano, Società Editrice Libraria, 1901.
- JANET, P. [1903], Les obsessions et la psychasténie, Paris, 2 voll.
- JANVID, M. [2004], Epistemological naturalism and the normativity objection, or from normativity to constitutivity, in «Erkenntnis», 60, pp. 35-49.
- JEFFRIES, K.J., SCHOOLER, C., SCHOEBBACH, C., HERSCOYTCH, P., CHASE, T.N. e BRAUN, A.R. [2002], The functional neuroanatomy of Tourette's syndrome. An FDC PET study III: Functional coupling of regional cerebral metabolic rates, in «Neuropsychopharmacology», 2002, vol. 27, n. 1, pp. 92-105.
- JELLEMA, T., BAKER, C.I., WICKER, B. e PERRET, D.I. [2000], Neural representation for the perception of the intentionality of action, in «Brain and Cognition», 2000, n. 44, pp. 280-302.
- JOB, R. [2004], Memoria semantica e categorizzazione, in Fondamenti di psicologia generale, a cura di M. Zorzi e V. Girotto, Bologna, Il Mulino, pp. 143-155.
- JOHANSSON, S. [2005], Origins of Language. Constraints on Hypoteses, Amsterdam, John Benjamins Publishing Company.
- JOHNSON-LAIRD, P. [1988], The Computer and the Mind, Cambridge (MA), Harvard University Press.
- JOLLIFFE, I.T. [1986], a cura di, Principal Component Analysis, Berlin, Springer Verlag.
- JONKERS, R. [1998], Comprehension and Production of Verbs in Aphasic Speakers, Groningen, Grodil.
- [2000], Verb-finding problems in Broca's aphasics: The influence of transitivity, in Grammatical Disorders in Aphasia. A Neurolinguistic Perspective, a cura di R. Bastiaanse e Y. Grodzinsky, London, Whurr Publishers.
- JONKERS, R. e BASTIAANSE, R. [1996], The influence of instrumentality and transitivity on action naming in Broca's and anomic aphasia, in "Brain and Languages", vol. 55, n. 1, pp. 37-39.

- JUNG-BEEMAN, M. [2005], Bilateral brain processes for comprehending natural language, in «Trends in Cognitive Sciences», 2005, vol. 9, n. 11, pp. 512-518.
- JUST, M.A. e CARPENTER, P.A. [1992], A capacity theory of comprehension: Individual differences in working memory, in «Psychological Review», 1992, n. 99, pp. 122-149.
- KANDEL, E.R., SCHWARTZ, J.H. e JESSEL, T.M. [1991], Principles of neural science, Amsterdam, Elsevier.
- [2003], a cura di, Principi di neuroscienze, Milano,
 Casa editrice ambrosiana.
- KANDEL, J.H. [2003], Turbe del pensiero e della volizione: la schizofrenia, in KANDEL, SCHWARTZ e JESSEL [2003, 1175-1195].
- KANNER, L. [1943], Autistic disturbances of affective contact, in «Nervous Child», n. 2, pp. 217-250.
- KAPIAN, D. [1977], Demonstratives. Ån Essay on the Semantics, Logic, Metaphysics, and Epistemology of Demonstratives and Other Indexicals, in Themes From Kaplan, a cura di J. Almog, J. Perry e H. Wettstein, New York, Oxford University Press, pp. 481-563.
- [1989], Afterthoughts, in Themes From Kaplan, a cura di J. Almog, J. Perry e H. Wettstein, New York, Oxford University Press, pp. 565-614.
- KAPLAN, H., LANCASTER, J. e ROBSON, A. [2003a], Embodied capital and the evolutionary economics of the buman lifespan, in Lifespan: Evolutionary, Ecology and Demographic Perspectives, a cura di J.R. Carey e S. Tuljapakur, in «Population and Development Reviews, 29, Supplement 2003, pp. 152-182.
- KAPLAN, H., MUELLER, T., GANGESTAD, S. e LAN-CASTER, J. [2003b], Neural Capital and Lifespan Evolution among Primates and Humans, in The Brain and Longevity, a cura di C.E. Finch, J.M. Robine e Y. Christen, Springer, pp. 69-98.
- KAPLAN, H. e LANCASTER, J. B. (2003c), An Evolution ary and Ecological Analysis of Human Fertility, Maing Patterns and Parental Investment, in Offspring: Fertility Behavior in Biodemographic Perspective, a cura di K.W. Wachter e R.A. Bulatao, National Research Council, Washington (DC), National Academies Press, pp. 170-250.
 - Karmiloff-SMITH, A. [1992], Beyond Modularity, A Developmental Perspective on Cognitive Science, Cambridge (MA)-London, MIT Press, 1992; trad. ii. Oltre la mente modulare. Una prospetitiva evolutiva sulla scienza cognitiva, Bologna, Il Mulino, 1995.
 - KASHER, A., BATORI, G., SOROKER, N., GRAVES, D. e ZAIDEL, E. [1999], Effects of Right- and Left-Hemisphere Damage on Understanding Conversational Implicatures, in «Brain and Language», 1999, n. 68, pp. 566-590.
- KATZ, W.F. [1988], Anticipatory coarticulation in

- aphasia: Acoustic and perceptual data, in «Brain and Language», 1988, n. 35, pp. 340-368.
- KATZ, W.F., MACHETANZ, U.O. e SCHONLE. P. [1990a]. A Kinematic analysis of anticipatory coarticulation in the speech of anterioraphasic subject using electromagneticarticulography, in «Brain and Language», 1990, n. 38, pp. 555-575.
- [1990b], Anticipatory labial coarticulation in the speech of German-speaking anterior aphasic subject: Acousticanalyses, in «Journal of Neurolinguistics», 1990, n.5, pp. 295-320.
- KEIL, F.C. [1989], Concepts, Kinds, and Cognitive Development, Cambridge (MA), MIT Press,
- KELLOGG, W.N. e KELLOGG, L.A. [1933], The Apeand theChild: A Studyof Environmental In fluenceupon Early Behavior, New York, Whittlesey House.
- KEMMERER, D. e TRANEL, D. [2000], Verb retrieval in brain-damaged subjects: 1. Analysis of stimulus, lexical, and conceptual factors, in «Brain and Language», 2000, vol. 73, n. 3, pp. 347-392.
- KEMPLER, D. e VAN LANCKER, D. [2002], Effect of speech task on intelligibility in dysarthria: A case study of Parkinson's disease, in «Brain and Language»,2002, n. 80, pp. 449-464.
- KIDD, R. [1998]. The past is the key to the present: Thoughts on the origins of human foot structure, function and dysfunction as seen from the fossil record, in «The Foot», 1998, vol. 8, pp. 75-84.
- KIM, M. e THOMPSON, C.K. [2000], Patterns of comprehension and production of nouns and verbs in agrammatism: Implications for lexical organization, in «Brain and Language», 2000, vol. 74, n. 1. pp. 1-25.
- [2004], Verb deficits in Alzheimer's disease and agrammatism: Implications for lexicalor ganization, in «Brain and Language», 2004, vol. 88, n. 1, pp. 1-20.
- KIMURA, D. [1993], Neuromotor mechanisms in human communication, Oxford University Press-ClarendonPress.
- KING, I. e KUTAS, M. [1995]. Who did what and when? Using word- and causal- level ERPs to monitor working memory usage in reading, in «Journal of Cognitive Neuroscience», 1995, vol. 3, n. 7, pp. 376-395.
- Kiss, K. [2000], Effect of verb complexity on agrammaticaphasics' sentence production, in Grammatical Disorders in Aphasia: A Neurolinguistic Perspective. a cura di R. Bastiaanse e Y. Grodzinsky, London, Whurr Publishers, pp. 123-151.
- KOHONEN, T. [1990], The self-organizing map, in «Proceedings of the IEEE», 1990, n. 78, pp. 1464-
- KORIAT, A., GOLDSMITH, M. e PANSKY, A. [2000], Toward a Psychology of Memory Accuracy, in «Annual Review of Psychology», 2000, n. 51, pp. 481-537.

- KOSSLYN, S.M. [1996], Imageand Brain: The Resolution of the Imagery Debate, Cambridge (MA), MIT Press-Bradford Book
- KOTZ, S.A., GUNTER, T.C. e WONNEBERGER, S. [2005], The basal ganglia are receptive to rhythmic compensation during auditory syntactic processing ERP patient data, in «Brain and Language», 2005, n. 95, pp. 70-71.
- KOTZ, S.A., MEYER, M., ALTER, K., BESSON, M., VON CRAMON, Y. e FRIEDERICI, A.D. [2003], On the lateralization of emotional prosody: An event-related functional MR investigation, in «Brain and Language», 2003, n. 86, pp. 366-376.
- KRAEPELIN, E. [1899], Psychiatrie, ein Lehrbuch, Leipzig, 1907, 2 voll.; trad. it. Trattato di psichiatria, a cura di A. Tamburini, Milano, 3 voll., 1909.
- KUCZAI, S.A. [1977]. The acquisition of regular and irregular past tense forms, in «Journal of Verbal Learning and Verbal Behavior», 1977, n. 16, pp. 589-600
- KUTAS, M. e FEDERMEIER, K.D. [2000], Electrophysiology reveals semantic memory use in language comprehension, in «Trends in Cognitive Sciences». 2000, vol. 4, n. 12, pp. 463-470.
- KUTAS, M. e HILLYARD, S.A. [1980], Reading senseless sentences:Brainpotentials reflect semanticincongruuv. in «Science», 1980, n. 207, pp. 203-205.
- [1984], Brain potentials reflect word expectancy and semantic association during reading, in «Nature», 1984, n. 307, pp. 161-163
- KUTAS, M. e KING, I.W. [1996], The potentials for basic sentence processing. Differentiating integrative processes, in Attention and Performance XVI: Information Integration in Perception and Communication, a cura di T. Inui e J.L. McClelland, Cambridge (MA), MITPress, pp. 501-546.
- LADEFOGED, P. e CHO, T. [2001], Linking linguistic contrasts to reality: The case of VOT, in To Honour Eli Fischer-Jørgensen, a cura di N. Grønnum e J. Rischel, Copenhagen, C.A., Reitzel, pp. 212-225.
- Lai, C.S.L., Fisher, S.E., Hurst, J.A., Vargha-Kha-DEM. F. e MONACO, A.P. [2001], A forkhead-domain gene is mutated in a severe speech and language disorder, in «Nature», 2001, n. 413, pp. 519-523.
- LAITMAN, J.T. e CRELIN, E.S. [1976], Postnataldevelopment of the basicranium and vocal tract region in man, in Development of the Basicranium, a cura di I.F. Bosma, Maryland, Bethesda, pp. 206-219.
- LAITMAN, J.T. e HEIMBUCH, R.C. [1982], The basicranium of Plio-Pleistocene hominids as an indicator of their upper respiratory systems, in «American Journal of physical Anthropology», 1982, n. 59, pp. 323-343
- LAITMAN, I.T., HEIMBUCH, R.C. e CRELIN, E.S. [1978]. Developmental change in a basicranial line and its relationship to the upper respiratory system in living

- primates, in «American Journal of Anatomy», 1978, n. 152, pp. 467-483.
- [1979], The basicranium of fossil hominids as an indicator of their upper respiratory systems, in «American Journal of physical Anthropology», 1979, n. 51, pp. 15-34.
- LAKOFF, G. [1987], Women, Fire, and Dangerous Things: What Categories Reveal About the Mind, Chicago, University of Chicago Press.
- LAKOFF, G. e JOHNSÓN, M. [1980], Metaphors We Live by, Chicago, University of Chicago Press; trad. it. Metafora e vita quotidiana, Milano, Bompiani, 1998.
- LANDAU, B., SMITH, L.B. e JONES, S. [1988], Syntactic context and the shape bias inchildren's and adults' lexical learning, in "Journal of Memory and Language", 1988, n. 31, pp. 807-825.
- LANGACKER, R. [1987], Foundations of Cognitive Grammar, vol. I, Stanford (CA), Stanford UniversityPress.
- LECOURS, A.R. e LHERMITTE, F. [1979], L'aphasie, Paris, Flammarion.
- LENNEBERG, E.H. [1967], Biological Foundation of Language, New York, John Wiley; trad. it. Fondamenti biologici del linguaggio, Torino, Bollati Boringhieri, 1971.
- LEROI-GOURHAN, A. [1964a], Le geste et la parole. Technique et langage, Edition Albin Michel; trad. it. Il gesto e la parola. Tecnica e linguaggio, Torino, Einaudi, 1977.
- [1964b], Préhistoire de l'art occidental. L'art et les grandes civilisations, Paris, Lucien Mazenod.
- [1964c], Les religions de la préhistoire, Paris, PuF; trad. it. Le religioni della preistoria, Milano, Adelphi. 1993.
- [1983], Le fildu temps. Le temps dessciences, Paris, Fayard.
- [1984], Introduction à l'art pariétal paléolithique.
 L'empreinte de l'homme, Milano, Jaca Book.
 [1992], L'art pariétal, langage de préhistoire.
- L'homme des origines, Grenoble, Jérôme Millon. LESLIE, A.M. [1987], Pretense and representation: The origins of the «theory of mind», in «Physiological
- Review», 1987, n. 94, pp. 412-426.
 [2005], Developmental parallels in understanding minds and bodies, in "Trends in Cognitive Sciences», 2005, vol. 9, n. 10, pp. 459-463.
- LEWONTIN, R. [2000], The Triple Helix: Gene, Organism, and Environment, Cambridge (MA), Harvard University Press. nuova ed. 2002.
- LI, P., FARKAS, I. e MACWHINNEY, B. [2004], Early lexical development in a selforganizing neural network, in «Neural Networks», 2004, n. 17, pp. 1345-1362.
- LIEBERMAN, D.E. e McCARTHY, R.C. [1999], The ontogeny of cranial base angulation in humans and

- chimpanzees and its implications for reconstructing pharyngeal dimensions, in «Journal of Human Evolution», 1999, n. 36, pp. 487-517.
- LIEBERMAN, D.E., ROSS, C.R. e RAVOSA, M. [2000], The primate cranial base: Ontogeny, function, and integration, in «Yearbook of Physical Anthropologys, 2000, n. 43, pp. 117-169.
- LIEBERMAN, Ph. [1975], On the Origins of Language. An Introduction to the Evolution of Human Speech, New York, MacMillan; trad. it. L'origine delle parole, Torino, Einaudi, 1980.
 - [1984], The Biology and Evolution of Language, Cambridge (MA), Harvard University Press.
- [1991], Uniquely Human. The Evolution of Speech, Thought, and Selfless Behavior, Cambridge (MA)-London.
- [2000], Human Language and Our Reptilian Brain: The Subcortical Bases of Speech, Syntax and Thought, Cambridge (MA), Harvard University Press
- [2002], On the Natureand Evolution of the Neural Bases of Human Language, in «Yearbook of Physical Anthropology», 2002, n. 45, pp. 36-62.
- (2003), Motor control, speech, and the evolution of human language, in Language Evolution: The States of the Art, a cura di M.H. Christiansen e S. Kirby, Oxford, Oxford University Press, pp. 255-271.
- [2004], Linguistic Evolution: Overview, in Encyclopedia of Linguistics, a cura di Ph. Strazny, New York, Fitzroy Dearborn.
- LIEBERMAN, Ph. e CRELIN, E.S. [1971], On the speech of Neanderthal man, in «Linguist Inquiry», 1971, n. 2, pp. 203-222.
- LIEBERMAN, Ph., CRELIN, E.S. e KLATT, D.H. [1972], Phonetic ability and related anatomy of the newborn, adult human, Neanderthal man, and the chimpanzee, in «American Anthropology», 1972, n. 74, pp. 287-307.
- LIEBERMAN, Ph., KAKO, E., FRIEDMAN, J., TAJCHMAN, G., FELDMAN, L.S. e JIMINEZ, E.B. [1992], Speech production, syntax comprehension, and cognitive deficits in Parkinson's disease, in «Brain and Language», vol. 43, n. 2, pp. 169-189.
- LIEGEOIS, F., BALDEWEG, T., CONNELLY, A., GADIAN, D.G., MISHKIN, M. e VARGHA-KHADEM, F. [2003], Language fMRI abnormalities associated with FOXF2 gene mutation, in «Nature Neuroscience», 2003, n. 6 pp. 1230-1237.
- LINTON, M. [1975], Memory for real-world events, in Explorations in Cognition, a cura di D.A. Norman e D.E. Rumelhart, San Francisco, Freeman.
- LISKER, L. e ABRAMSON, A.S. [1964], A cross-language study of voicing in initial stops: Acoustical measurements, in «Word», n. 20, pp. 384-422.
- LLOYD, A.J. [1999], Comprehension of prosody in Parkinson's disease, in «Cortex», 1999, n. 35, pp. 389-402.

- LOFTUS, E. [1975], Spreading activation within semantic categories: Comments on Rosch's «Cognitive Representations of Semantic Categories», in «Journal of Experimental Psychology: General», 1975. n. 3. pp. 234-240.
- LOFTUS, E. e PALMER, J. [1974], Reconstruction of automobile destruction: An example of the interaction between language and memory, in solutinal of Verbal Learning and Verbal Behavior», 1974, n. 13, pp. 585-589.
- [1979], Eyewitness Testimony, Cambridge (MA), Harvard University Press.
- LOGIE, R.H. e BADDELEY, A.D. [1987], Cognitive processes in counting, in Journal of Experimental Psychology: Learning, Memory, and Cognition», 1987, n. 13 (2), pp. 310-326.
- LO PIPARO, F. [1994], Prefazione a S. Vecchio, Le parole come segni. Introduzione alla linguistica agostiniana, Palermo, Editore Novecento, pp. V-XXV.
- [1999], Il Mondo le specie animali e il linguaggio. La teoria zoocognitiva del Tractatus, in Percezione linguaggio coscienza, a cura di M. Carenini e M. Matteuzzi, Saggi di filosofia della mente, Macerata, Quodlibet, pp. 183-202.
- [2001], Sulla linguisticità della schizofrenia, in Pennisi e Cavalieri [2001], pp. 327-347.
- [2001], Aristotele e il linguaggio, Roma-Bari, Laterza.
- [2006], L'alterità come fondamento dell'identità.
 Riflessioni teoriche, in corso di stampa.
- LORENZ, K. [1959], Psychologie und Stammesgeschichte, in Evolution der Organismen, a cura di G. Heberer, Stuttgart, Fischer.
- [1978], Vergleichende Verhaltensforschung: Grundlagen de Ethologie, Springer-Verlag; trad. it. L'etologia, Torino, Boringhieri, 1990.
- LOVEJOY, C.O. [2005], The natural history of human gait and posture. Part 1. Spine and pelvis, in «Gait and Posture», 2005, 21, pp. 95-112.
- LUDLOW, C.L. e LOUCKS, T. [2003], Stattering: A dynamic motor control disorder, in «Journal of Fluency Disorders», 2003, p. 28, pp. 273-295.
- LURIJA, A.R. [1973], The Working Brain: An Introduction to Neuropsychology, New York, Basic Books; trad. it. Come lavora il cervello. Introduzione alla neuropsicologia, Bologna, Il Mulino, 1977.
- LUZZATTÍ, C., RAGGI, R., ZONCA, G., PISTARINI, C., CONTARDI, A. e PINNA, G. [2002], Verò-noun double dissociation in aphasic lexical impairments: The role of word frequency and imageability, in «Brain and Language», 2002, n. 81, pp. 432-444.
- LYONS, J. [1977], Semantics, vol. I, Cambridge (UK), Cambridge University Press.
- MacKay, A.V., Iversen, L., Rossor, M., Spokes, E., Bird, E., Arregui, A., Creese, I. e Synder, S.H.

- [1982], Increased brain dopamine and dopamine receptors in schizophrenia, in «Archives of General Psychiatry», 1982, p. 39, pp. 992-997.
- MacLannon, A. [1996], The scaling of gross dimensions of the spinal cord in primates and other species, in «Journal of Human Evolution», 1996, n. 30, pp. 71-87.
- MacLarnon, A.M. e Hewitt, G.P. [1999], The evolution of human speech: The role of enhanced breathing control, in «American Journal of physical Anthropologys, 1999, n. 109, pp. 341-363.
- MACNEILAGE, P.F. e Davis, B.L. [2001], Motor mechanisms in speech ontogeny: Phylogenetic, neurobiological and linguistic implications, in «Current Opinion in Neurobiology», 2001, n. 11, pp. 696-700.
- MACWHINNEY, B. [1994], The dinosaurs and the ring, in The Reality of Linguistics Rules, a cura di S. Lima, Amsterdam, John Benjamins, pp. 283-320.
- [1999], The emergence of language, a cura di B. MacWhinney, II ed., Mahwah (NJ), Lawrence Erlbaum Associates.
- MACWIIINNEY, B. e LEINBACH, J. [1991], Implementations are not con-ceptualizations: Revising the verb learning model, in «Cognition», 1991, n. 29, pp. 121-157.
- MAcWHINNEY, B., LEINBACH, J., TARABAN, R. e MCDONALD, J. [1989], Language learning: Cues or rules?, in «Journal of Memory and Language», 1989, n. 28, pp. 255-277.
- MAESTRIPIERI, D. [1995], First steps in the macaque world: Do rhesus mothers encourage their infants independent locomotion?, in «Animal Behaviouc», 1995, 49, pp. 1541-1549
 [1996], Maternal encouragement of infant locomo-
- tion in pigtail macaques, Macaca nemestrina, in «Animal Behaviour», 1996, n. 51, pp. 603-610. MALSBURG, C. VON DER [1973], Self-organization of
- MALSBURG, C. VON DER [1973], Self-organization of orientation sensitive cells in the striate cortex, in «Kibernetic», 1973, p. 14, pp. 85-100.
- [1995], Network self-organization in the ontogenesis of the mammalian visual system, in An introduction to neural and electronic networks, a cura di S.F. Zornetzet, J. Davis, C. Lau e T. McKenna, II ed. New York, Academic Press, pp. 447-462.
- MALSON, L. [1964], Les enfants sauvages, Paris, Union Generale d'Edition.
- MANDLER, G. [1980], Recognizing: The judgment of previous occurrence, in «Psychological Review», 1980, n. 87, pp. 252-271.
- MARCONI, D. [1994], Dopo la svolta linguistica, in R. Rorty, La svolta linguistica, Milano, Garzanti.
- [1997], Lexical Competence, Cambridge (MA), MIT Press; trad. it. La competenza lessicale, Roma-Bari, Laterza, 1999.
- [2001], Filosofia e scienza cognitiva, Roma-Bari, Laterza.

- MARCUS, G.F. [1993], Negativeevidence in languageacaustion, in «Cognition», 1993, n. 46, pp. 53-85.
- MARCUS, G.F. e FISHER, S.E. [2003], FoxP2 in focus: What can genestell us about speech and language?. in «Trends in CognitiveSciences», 2003, n. 7, pp. 257-262.
- MARIE, P. [1922], Travaux et Mémoires, Paris, MARKMAN, E. [1989], Categorization and naming in
- children, Cambridge (MA), MIT Press. MARLER, P. [1970], A comparative approach to vocal learnig: Song development in white-crowned sparrow, in «Journal of Comparative and Physiological Psycology», 1970, n. 71, pp. 1-25.
- [1976], Sensory Templates in Species-specific Behavior, in Simpler Networkand Behavior, a cura di I.C. Fentress, Sunderland, Sinauer, pp. 314-329.
- MARRAFFA, M. e MEINI, C. [2005], La mente sociale. Le basi cognitive della comunicazione, Roma-Bari,
- Marsala, M. [2005], a cura di, La memoria neicontesti di vita, Milano, Franco Angeli.
- MASHAL, N., FAUST, M. e HENDLER, T. [2005], The role of the right hemisphere in processing nonsalient metaphorical meanings: Application of Principal Components Analysis to (MR) data, in «Neuropsychologia», 2005, n. 43, pp. 2084-2100.
- MAYR, E. [1982], The Growth of Biological Thought. Cambridge (MA), Harvard University Press.
- MAZZONE, M. [2000], Percepire astrazioni, Rende (CS), Università della Calabria.
- McClelland, J., McNaughton, B.L. e O'Reilly, R.C. [1995]. Whythere are complementarylearning systems in the hippocampus and necocortex: Insights from the successes and failures of connectionist models of learning and memory, in «Psychological Review», 1995, vol. 3, n. 102, pp. 419-457.
- McDowell, J. [1994], Mindand World, Cambridge (MA), President and Fellows of Harvard College; trad. it. Mente e mondo, Torino, Einaudi, 1999. McGaugh, I.L. [2000], Memory and Emotion. The
- making of Lasting Memories, London, Weidenfeld & Nicolson.
- McGaugh, J.L., Ferry, B., Vadzarianova, A. e ROOZEENDAL, B. [2003], Amygdala: Role in modulation of memory storage, in The Amyodala A Functional Analysis, a cura di D. Aggleton, London, Oxford University Press.
- McGINN, C. [1984], Wittgenstein on Meaning, Oxford, Blackwell.
- MCKOON, G. e RATCLIFF, R. [1998], Memory-based language processing Psycholinguistic research in the 1990s, in «Annual Review of Psychology», 1998, n. 49, pp. 25-42.
- McNeill, R.A. [1983], Gli invertebrati, Padova, Piccin Nuova Libraria S.p.A.
- McShane, J. [1979], The development of naming, in «Linguistics», 1979, n. 17, pp. 879-905.

- MECKLINGER, A., SCHRIEFERS, H., STEINHAUER, K. e. FRIEDERICI, A.D. [1995], Processing relative clauses varying on syntactic and semantic dimensions: An analysis with event-related potentials, in «Memory and Cognition», 1995, vol. 4, n. 23, pp. 477-494, MEDIN, D.L. e ATRAN, S. [1999], a cura di, Folkbiol-
- ogy, Cambridge (MA), MIT Press. MEGA, M.S. e ALEXANDER, M.E. [1994]. Subcortical aphasia: The core pro file of capsulostriatal infarction.
- in «Neurology», 1994, n. 44, pp. 1824-1829. MEHLER, I. [1963]. Some effects of grammatical transformations on the recall of English sentences, in « Journal of Verbal Learning and Verbal Behavior». 1963, n. 2, pp. 346-351.
- MEHLER, I., BERTONCINI I., BARRIERE, M. e JOSSIK-GERSCHENFEKD, D. [1978], Infant recognition of mother's voice, in «Perception», 1999, n. 7, pp.
- MEINI, C. [2004]. L'acquisizione dell'essico, in «Sistemi Intelligenti», 2004, n. 16, pp. 29-52.
- MELTZER, M.L. [1983], Poor memory: A case report, in «Journal of Clinical Psychology», 1983, n. 39 (1), pp. 3-10.
- MERLIN, D. [1991], Origins of the Modern Mind. Three Stages in the Evolution of Culture and Cognition, Cambridge (MA), Harvard University Press.
- MERRIMAN, W. [1999], Competition, attention, and young children's lexical processing, in The Emergenceof Language, a cura di B. Mac Whinney, II ed. Mahwah (NJ), Lawrence Erlbaum Associates.
- MESULAM, M.M. [1990]. Large-scale neurocognitive networks and distributed processing for attention, language and memory, in «Archives of Neurology». 1990, vol. 28, n. 5, pp. 597-613.
- METTER, E. I. [1985]. Speech Disorders: Clinical Evaluation and Diagnosis, New York, SP Medical and ScientificBooks.
- MEYER, D.E. e SCHVANEVELDT, R.W. [1971], Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations, in «Journal of Experimental Psychology», 1971, n. 90, pp. 227-234.
- MICELI, G., SILVERI, M.C., NOCENTINI, U. e CARA-MAZZA, A. [1988], Patterns of dissociation in comprehension and production of nouns and verbs, in «Aphasiology», 1988, n. 2, pp. 351-358.
- MIIKKULAINEN, R. [1993], Subsymbolic Natural Language Processing: An Integrated Model of Scripts, Lexicon and Memory, Cambridge (MA), MIT Press.
- [1997], Dyslexic and category-specific aphasic impairments in aself-organizing feature map model of the lexicon, in «Brain and Language», 1997, n. 59, pp. 334-366.
- [1999], Text and discourse understanding: The DISCERN system, in A handbook of naturallanguage

- MIIKKULAINEN, R. e DYER, M.G. [1991], Natural language processing unth modular PDP networks and distributed lexicon, in «Cognitive Science», 1991, n. 15, pp. 343-399.
- MIIKKULAINEN, R. e MAYBERRY, M.R. [1999], Disambiguation and grammar as emergent soft constraints, in The emergence of language, a cura di B. MacWhinney, II ed. Mahwah (NJ), Lawrence Erlbaum Associates.
- MILLER, G.A. [1962], Decisions units in the perception of speech, in «IRE Transactions on Information Theory», n. 2.
- MILLER, G. A. e ISARD, S. [1964], Free recall of selfembedded english sentences, in «Information and Control». 1964. n. 7. pp. 292-303.
 - MILLIKAN, R. [2005], Language: A Biological Model, Oxford, Clarendon Press.
- MILNER, B., CORKIN, S. e TEUBER, H.L. [1968], Further analysis of the hippocampal amnesic syndrome. Fourteen year follow-up study of H.M., in «Neuropsychologia», 1968, n. 6, pp. 215-234.
- MINKOWSKI, E. [1927], La schizophrénie. Psychopathologie des schizoïdes et des schizophrènes, Paris, Payot.
- MINSKY, M.L. [1954], Neuralnets and thebrain-model problem, Tesi di dottorato, Princeton University.
- MINSKY, M. e PAPERT, S. [1969], Perceptrons, Cambridge (MA), MIT Press.
- MITHEN, S. [1994], From domain specific to generalized intelligence: A cognitive interpretation of the middle/upper palaeolithic transition, in Renfrew e Zubrow [1894, 29-40].
- MIYASHITA, K., OK, S. e HASE, K. [2003], Evolutionary generation of human-like bipedal locomotion, in «Mechatronics», 2003, n. 13, pp. 791-807.
- MONOD, J. [1970], Le hasard et la nécessité. Essai sur la philosophie naturelle de la biologie moderne, Paris, trad. it. Ilcaso e la necessità, Milano, Mondadori. MORRIS, C.D., BRANSFORD, J.D. e FRANKS, J. J. [1977],
- Levels of processing versus transfer appropriate processing, in «Journal of Verbal Learning and Verbal Behaviour», 1977, n. 16, pp. 519-533.
- MULLER, H.M., KING, J.W. e KUTAS, M. [1997], Event-related potentials elicated by spoken relative clauses, in «CognitiveBrain Research», 1997, vol. 3, n. 5, pp. 193-203.
- MURAI, K., TANAKA, Y., MIYAZAKI, M. [2005], Acoustic analysis of speech output in Broca's aphasia and Parkinsen desease, in «Brain and Language», 95, pp. 217-218.
- MURPHY, G.L. e MEDIN, D.L. [1985], The role of theories in conceptualcoherence, in «Psychological Review», 1985, vol. 3, n. 92, pp. 289-316.

- MYOWA-YAMAKOSHI, M. e TOMONAGA, M. [2001], Development of face recognition in an infant gibbon (Hylobatesagilis), in «Infant Behavior & Development», 2001, n. 24, pp. 215-227.
- NADER, K., GLENN, E. e SCHAFE, LE DOUX J. [2000], Fear memories require protein synthesis in theamygdala forreconsolidation afterretrieval, in«Nature», 2000. n. 406, pp. 72-726.
- NAGEL, T. [1974], What is it like to be a bat, in «The Philosophical Review», 83, 4, pp. 435-450, trad. it. Che effetto fa essere un pipistrello, in T. Nagel, Questioni mortali, Milano, Il Saggiatore, 1986.
- NANNINI, S. [2002], L'anima e il corpo. Un'introduzione storica alla filosofia della mente, Roma-Bari, Laterza.
- NARENDRA, K.S. e PARTHASARATHY, K. [1990], Identification and control of dynamical systems using neural networks, in «IEEE Transactions on Neural Networks», 1990, n. 1, pp. 4-27.
- NEAREY, T. [1978], Phonetic Features for Vowels, Bloomington, Indiana University Linguistics Club.
- NEGUS, V. [1949], The Comparative Anatomy and Physiology of the Larynx. New York, Hafner.
- NEISSER, U. [1976], Cognition and Reality, Freeman, San Francisco; trad. it. Conoscenza e realtà, Bologna, Il Mulino, 1981
- NEISSER, U. e WINOGRAD, E. [1988] (a cura di), Remembering Reconsidered. Ecological and Traditional Approaches to the Study of Memory, Cambridge (MA), Cambridge University Press; trad. it. La memoria. Padova. CEDAM. 1988.
- NELSON, K. [1996], The Language in Cognitive Development. The Emergence of Mediated Mind, Cambridge (MA), Cambridge University Press.
- NETSELL, R., DANIEL, B. e CELESIA, G.G. [1975], Acceleration and weakness in parkinsonian dysarthria, in «Journal of Speech and Hearing Disorders», n. 40, pp. 170-178.
- NewBury, D.F., BONORA, E., LAMB, J.A., FISHER, S.E., LAI, C.S., BAIRD, G., JANNOUN, L., SUGHAN, V., STOTT, C.M., MERRICKS, M.J., BOLION, P.F. BAILEY, A.J., P. MONACO, A.P. [2002], FONZY not a major susceptibility gene for autism or specific language impairment, in American Journal of Human Genetics», 2002, vol. 70, n. 5, pp. 1318-1327
- NEWPORT, E.L. [1990], Maturational constraints on language learning, in «Cognitive Science», 1990, n. 14, pp. 11-28.
- NEWTON, M. [2004], Savage Girls and Wild Boy: A History of Feral Children, London, Faber and Faber.
 - NICHÓLS, S. e STICH, S.P. [2003], Mindreading. An Integrated Account of Pretence, Self-Awareness, and Understanding Other Minds, Oxford, Clarendon Press.

- [2004], Reading One's Own Mind: Self-Awareness and Developmental Psychology, in New Essays in the Philosophy of Language and Mind, a cura di M. Ezcurdia, R. Stainton e C. Viger, Calgary, University of Calgary Press.
- NiCHOLSON, R. [1981], The relationship between memory span and processing speed, in M.P. Friedman, J.P. Das e N. O' Connor (a cura di), Intelligence and Learning, London, Plenum, pp. 179-183.
- OHTA, K., ÜCHIYAMA, M., MATSUSHIMA, E. e TORU, M. [1999], An event-related potential study in schizophrenia using Japanese sentences, in «Schizophrenia Research». 1999. n. 40. pp. 159-170.
- OLIVERIO, A. [1999], Esplorare la mente. Il cervello tra filosofia e biologia, Milano, Raffaello Cortina. ONO, T., SQUIRE, L.R., RAICHLE, M.E., PERRETT, D.I. e
- ONO, T., SQUIRE, L.R., RAICHLE, M.E., PERRETT, D.I. e FUKUDA, M. [1993], a cura di, Brain Mechanisms of Perception and Memory: From Neuron to Behavior, Oxford, Oxford University Press.
- ORAM, M.W. e PERRETT, D.I. [1994], Responses of anterior superior temporal polysensory (STPa) neurons to «biological motion» stimuli, in «Journal of Cognitive Neuroscience». 1994. n. 6. pp. 99-116.
- OWREN, M.J., SEYFARTH, R.M. e CHENEY, D.L. [1997], The acoustic features of vowel-like grunt calls in chacma baboons (Papio venephalus urinus): Implication for production precesses and funcions, in «Journal of the Acoustical Society of America», 1997, n. 101, pp. 2951-2963.
- PAIVIO, A. [1986], Mental Representations: A Dualcoding Approach, New York, Oxford University Press.
- PEACOCKE, C. [1997], Concepts without words, in Language, Thought, and Logic: Essays in Honour of Michael Dummett, a cura di R.G. Heck, Oxford, Oxford University Press.
- PELEG, O., GIORA, R. e FEIN, O. [2004], Contextual strength: The whens and hows of context effects, in Experimental Pragmatics, a cura di I.A. Noveck e D. Sperber, Houndmills-New York, Palgrave-Macmillan.
- PELL, M.D. [1996], On the receptive prosodic loss in Parkinson, in «Cortex», 1996, n. 32, pp. 693-704.
 PENNSI, A. [1994], Le lingue mutole, Roma, La Nuova Italia Scientifica.
- [1997], La macchina schizofasica. Psicopatologia e filosofia del linguaggio, in Linguaggio e cognizione, a cura di F. Lo Piparo e D. Gambarara, Roma, Bulzoni, pp. 349-364.
- [1998], Psicopatologia del linguaggio. Storia, analisi, filosofie della mente, introduzione di F. Lo Piparo, Roma. Carocci.
- [2001], Misure senza misura. I processi cognitivi nella psicopatologia del linguaggio, in Patologie del linguaggio e scienze cognitive, a cura di A. Pennisi e C. Cavalieri, Bologna, Il Mulino.

- (2003), Biologia e semantica, in Significare e comprendere la semantica del linguaggio verbale, Atti dell'XI Congresso nazionale Milano 16-18 settembre 2004, a cura di A. Frigerio e S. Raynaud, in «Pubblicazioni della Società di Filosofia del linguaggio», 2005, Roma, Aracne Editrice, pp. 307-325.
- PENNISI. A., BUCCA, A. F. FALZONE, A. 12002], Le schzioformia è il prezzo che l'homo supiera ga al linguaggio? Schziofrenia e lateralizzazione, Riclazione al IX Congresso nazionale della Società di Filosofia del linguaggio, Noto, 10-14 ottobre 2002, ora in Id., Mente, cervello, linguaggio: una prospettiva evoluzionistica, Messina, EDAS, 2003, pp. 109-133.
- PENNISI, A. e CAVALIERI, R. [2001], a cura di, Patologie del linguaggio e scienze cognitive, Bologna, Il Mulino.
- PENNISI, A. e FALZONE, A. [2003], «Le (s)terminate antichità»: linguaggio, pensiero, evoluzione, in Linguaggio, Fenomenologia e Ricerbe cognitive Atti del convegno internazionale, Napoli 14-16 dicembre 2003, a cura di D. Jervolino e R. Phitto, in «Semiotiche», n. 3, 2004, Torino, Ananke, pp. 21-58.
- PENNIS, A., PLEBE, A. e FALZONE, A. (2004), What bas bomo superine really bought at the cost of school phrenia? Evolutionism seen through a philosophy of language, in Evolution of Language, Fifth international Conference, Max Planck Institute for Evolutionary Anthropology, Leipzig, 31 marzo-3 aprile 2004, in corso di stampa.
 - PENROSE, L.S. [1991], Survey of cases of familial mental illness, in «European Archives of Psychiatry Neurological Sciences», 1991, n. 240, pp. 315-324.
- PERCONTI, P. [2001], I disturbi lessicali nelle afasie, in Patologie del linguaggio e scienze cognitive, a cura di A. Pennisi e R. Cavalieri, Bologna, Il Mulino, pp. 161-192.
- [2003], Leggere le menti, Milano, Bruno Mondadori.
- [2005], La filosofia nella scienza cognitiva. Il caso dell'autocoscienza, in «Sistemi Intelligenti», 2005, XVII, 2, pp. 299-307.
- PEREZ-LAZARO, C., SANTOS, S., GARCES-REDONDO, M., PINOL-RIPOLL, G., FABRE-PI, O., MOSTACERO, E., LOPEZ-DEL VAL, L.J., TEJERO-JUSTE, C. e PASCUAL-MILIAN, L.F. [2005], Amnetic stroke caused by hippocampal infarction, in «Revista de Neurologia», 2005, vol. 15, n. 41, pp. 27-30.
- PERRY, J. [2001], Reference and Reflexivity, Stanford (CA), CSLI Publications.
- PIAGET, J. [1936]. La naissance de l'intelligence chez l'enfant, Neuchâtel, Delachaux et Niestlé; trad. it. La nascita dell'intelligenza nel bambino, Firenze, La nuova Italia, 1968.

- [1937], La construction du réel chez l'enfant, Neuchâtel, Delachaux et Niestlé, trad. it. La costruzione del reale nel fanciullo, Firenze, La nuova Italia, 1972.
- [1964], Six ètudes de Psychologie, Genève, Editions Gonthier; trad. it. Lo sviluppo mentale del bambino e altri studi di psicologia, Torino, Einaudi, 1967.
- PICKETT, E.R., KUMHIOLM, E., PROTOPAPAS, A., FRIEDMAN, J. e LIEBERMAN, P. [1998], Selective speech motors, syntax and cognitive deficits associated with bilateral damage to the head of the caudate nucleus and the putamen. A single case study, in «Neuropsychologias» 1998, n. 36, pp. 173-188.
- PINKER, S. [1994], The Language Instinct. How the Mind Creates Language, New York, William Morrow; trad. it. L'istinto dellinguaggio. Come la mente crea il linguaggio, Milano, Mondadori, 1997.
- [1997], Howthe Mind Works, New York, Norton; trad. it. Come funziona la mente, Milano, Mondadori. 2002.
- [2002], The Blank Slate: The Modern Denial of Human Nature, Allen Lane, Penguin Press; trad.
 it. Tabula rasa. Perchénon è verochetutti gli uomini nascono uvuali. Milano. Mondadori. 2005.
- PINKER, S. e BLOOM, P. [1990], Naturallanguage and natural selection, in «Behavioural and Brain Sciences», 1990, n. 13, pp. 707-784.
- PINKER, S. e JACKENDOFF, R. [2005], The faculty of language: What's special about it?, in «Cognition», 2005, n. 95, pp. 201-236.
- PINKER, S. e PRINCE, A. [1988], On language and connectionism: Analysis of aparallel distributed processing model of language acquisition, in «Cognition», 1988, n. 28, pp. 73-193.
- PLUM, F. [1972], Prospects for research on schizophrenia Neurophysiology. Neuropatological findings, in «Neurosciences Research Program Bulletin», 1972, n. 10, pp. 384-388.
- PLUNKETT, K. e JUOLA, P. [1999], A connectionist model of english past tense and plural morphology, in «Cognition», 1999, n. 48, pp. 21-69.
- in «Cognition», 1999, n. 48, pp. 21-09.
 PLUNKETT, K. e MARCHMAN, V.A. [1993], From rote learning to system building Acquiring verb morphology in children and connectionist nets, in
- PLUNKETT, K., SINHA, C., MØLLER, M. e STRANDSBY, O. [1992], Symbol grounding or the emergence of symbols? Vocabulary growth in children and a connectionistnet, in «Connection Science», 1992, n. 4, pp. 293-312.

«Cognition», 1993, n. 48, pp. 21-69.

POL, H., HULSHOFF, E., SCHNACK, H.G., MANDL, R.C.W., CAHN, W., COLLINS, D.L., EVANS A.C. e KAHN, R.S. [2003], Focal white matter density changes in schizophrenia: Reduced inter-hemispheric connectivity, in «Neurolmage», 2004, n. 21, pp. 27-35

- POLLARD, C. e SAG, I.A. [1994], Head-driven Phrase Structure Grammar, Stanford (CA), Stanford UniversityPress.
- POPPER, C. é ECCLES, J.C. [1977], The Self and Its Brain: An Argument for the Interactionism, London-New York, Springer International, trad. it. L'io e il suo cervello, Roma, Armando, 1981.
 - POVINELLI, D.J. [2000], Folk Physics for Apes, Oxford, Oxford University Press.
- [2004], Behind the ape's appearance: Escaping anthropomorphism in the study of other minds, in «Daedalus: Journal of the American Academy of Arts and Sciences», 2004, Winter, pp. 29-41.
- POVINELLI, D.J. e VONK, J. [2004], We don't need a microscope to explore the chimpanzee's mind, in «Mind and Language», 2004, n. 19, pp. 1-28.
- PRASDA, S. e PINKER, S. [1993], Similarity-based and rule-based generalizations ininflectional morphology, in «Languageand CognitiveProcesses», 1993, n. 8, pp. 1-56.
- PREDELLI, S. [1998a], I am not bere now, in «Analysis», 1998, vol. 58, n. 2, pp. 107-115.
- [1998b], Utterance, Interpretation, and the Logic of Indexicals, in «Mind and Language», 1998, vol. 13, n. 3, pp. 400-414.
- PREMACK, D. e WOODRUFF, G. [1978], Does the chimpanzee have a "Theory of mind", in "Behavioral and Brain Sciences", 1978, n. 4, pp. 426-515.
- PROBRAM, K. H. e BROADBENT, D.E. [1970], a curadi, Biology of Memory, New York, Academic Press.
- PUCE, A., ALLISON, T., BENTIN, S., GORE, J.C. e Mc-CARTHY, G. [1998], Temporal cortex activation in humans viewing eye and mouth movement, in «Journal of Neurosciences», 1998, n. 18, pp. 188-199.
- PUSTEJOVSKY, J. [1995], The Generative Lexicon, Cambridge (MA)-London, MIT Press.
- PUTIAM, H. [1960], Minds and Machines, in Dimensions of Mind, a cura di S. Hook, New York, New York University Press, pp. 138-164; trad. it. Menit e macchine, in Mente, linguaggio e realtà, Milano, Adelbhi, 1987, pp. 392-416.
- QUINE, W.V.O. [1960], Word and Object, Cambridge (MA), MIT Press; trad. it. Parola e oggetto, nuova ed. Milano, II Saggiatore, 1996.
- RAGGI, A. [1891], Riflessi dolorosi di origine psichica, in «Archivioitaliano per lemalattienervose», 1891, XXVIII. pp. 179-194.
- RAMACHANDRAN, V.S. [2003], The Emerging Mind, London, Profile Books; trad. it. Che cosa sappiamo della mente, Milano, Mondadori, 2004.
- RATCLIFF, R. e MCKOON, G. [1986], More on the distinction beetween episodic and semantic memory, in «Journal of Experimental Psychology: Learning, Memory and Cognition», 1986, 12, 2, pp. 312-313.

- REDA, M.A. [1993], Sistemicognitivi complessi epsicoterapia, Roma. La nuova Italia Scientifica.
- REGAN, T. [1983], The Casefor Animal Rights. Berkeley, The Regents of the University of California; trad. it. I diritti animali, Milano, Garzanti, 1990.
- REGIER, T. [2005], The emergence of words: Attentional learning in form and meaning, in «Cognitive Science», 2005, n. 29, pp. 819-865.
- REGIER, T., KAY, P. e COOK, R.S. [2005], Focal colors are universal after all, in «Proceedings of the National Academy of Sciences», 2005, n. 102, pp. 8386-8391.
- RENFREW, C. [1994], Towards a cognitive archaeology, in Renfrew e Zubrow [1994, 3-12].
- RENFREW, C. e ZUBROW, E.B.W. [1994], The Ancient
 Mind: Elements of Cognitive Archaeology, Cam-
- bridge, Cambridge University Press. RIBOT, Th. [1881], Les maladies de la memoire, Paris,
- Germer Baillière.
 RICCIO, D.C., MOODY, E.W. e MILLIN, P.M. [2002],
 Reconsolidation reconsidered, in «Integrative
 Physiological and Behavioral Science», 2002, n.
 37, pp. 245-253.
- RIGGS, K. J. [2005], Thinking harder about false belief, in «Trends in Cognitive Sciences September», 2005, vol. 9, pp. 440-441.
- 2005, vol. 9, n. 9, pp. 410-411. RIMLAND, B. [1965], Infantile Autism, London,
- Methuen.

 RIPS, L.J. [1989], Similarity, tipicality, and categorization, in Similarity and Analogical Reasoning, a cura di S. Vosniadou e A. Ortony, Cambridge, Cambridge University Press. pp. 21-61.
- Cambridge University Press, pp. 21-61.

 RITTER, H. e KOHONEN, T. [1989], Self-organizing semantic maps, in «Biological Cybernetics», 1989, n. 61, pp. 241-254.
- ROCKSTROH, B., KISSLER, J., MOHR, B., EULITZ, C., LOMMEN, U., WIENBRUCH, C., COHEN, R. e. EL-BERT, T. [2001], Altered Hemispheric Asymmetry of Auditory Magnetic Fields to Tones and Syllables in Schizophrenia, in Biological Psychiatry», 2001, n. 49, pp. 694-703.
- ROEDIGER, H.L. [2000], Why retrieval is the key process in understanding memory, in Memory, Consciousness and Brain. The Tallin Conference, a cura di E. Tulving, Philadelphia, Psychology Press, pp. 52-75.
- [2003], Reconsidering implicit memory, in C. Marsolek eJ. Bowers (a cura di), Rethinking Implicit Memory, Oxford, Oxford University Press, pp. 3-18.
- ROHDE, D.L. e PLAUT, D.C. [1999], Language acquistion in the absence of explicit negative evidence: How important is starting small?, in «Cognition», 1999, pp. 72, 67-109.
- ROLLS, É. e DECO, G. [2002], Computational Neuroscience of Vision, Oxford, Oxford University Press.

- RONCATO, S. e ZUCCO, G. [1993], I labirinti della memoria. Bologna. Il Mulino.
- RORTY, R. [1967], Metaphysical difficulties of linguistic philosophy, in The Linguistic Turn. Essays in Philosophical Method, a cura di R. Rorty, Chicago, University of Chicago Press; trad. it. La svolta linguistica, Milano, Garzanti, 1994.
- ROSCH, E. [1978], Principles of categorization, in Cognition and Categorization, a cura di E. Rosch e B. Lloyd, Hillsdale (N J), Erlbaum, pp. 27-48.
- ROSCH, E. e MERVIS, C. [1975], Family resemblances: Studies in the internal structure of categories, in «CognitivePsychology», 1975, n. 7, pp. 573-605.
- ROSCH, E., MERVIS, C.B., GRAY, W., JOHNSON, D. e BOYES-BRAEM, P. [1976], Basic objects in natural categories, in «Cognitive Psychology», 1976, n. 8, pp. 382-439.
- ROSENBAUM, R.S., KOHLER, S., SCHACTER, D.L., MOSCOUTCH, M., WESTMACOTT, R., BLACK, S.E., GAO, F. e TUJNING, E. (2005), The case of K.C., Contributions of a memory-impaired person to memory theory, in «Neuropsychologia», 2005, vol. 7, n. 43, pp. 899-1021.
- ROSENBAUM, R.S., WINOCUR, G. e MOSCOVITCH, M. [2001], New views on old memories: Revuluating the role of the hippocampal complex, in «Behavioral Brain Research», 2001, n. 127, pp. 183-197.
- ROSS, C. e RAVOSA, M.J. [1993], Basicranial flexion, relative brain size, and facial kyphosis in non-human primates, in «American Journal of physical Anthrorelogue, 1993. p. 210-230.
- pology», 1993, n. 91, pp. 305-324.
 ROWAN, A., LIEGEOIS, F., VARGHA-KHADEM, F., GA-DIAN, D., CONNELLY, A. e BALDEWEG, T. [2004].
 Language reorganization in children with early-onset lessons of the left bemisphere: An fMRt study, in «Brain», 2004, n. 127, pp. 1229-1236.
- RUBIN, D.C. [1986], Autobiographical Memory, Cambridge, Cambridge University Press.
- [1995], Remembering our past: Studies in autobiographical memory, Cambridge, Cambridge UniversityPress.
- RUBY, P. e DECETY, J. [2001], Effect of subjective perspective taking during simulation of action: A PET investigation of agency, in «National Neurosciences», 2001, n. 4, pp. 546-550.
- RUFFMAN, T. e PERNER, J. [2005], Do infants really understand false belief?, in «Trends in Cognitive Sciences», 2005, vol. 9, n. 10, pp. 462-463.
- RUMELHART, D.E. e McCLELLAND, J.L. [1981], An interactive activation model of context effects in letter perception: Part 1. An account of Basic Findings, in «Psychological Review», 1981, n. 88, pp. 375-407.
- [1986a], On learning of pasttenses od englishverbs, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, a cura di D.E.

- Rumelhart e J.L. McClelland, Cambridge (MA), MIT Press, vol. 2, pp. 216-271.
- [1986b], Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Cambridge (MA), MIT Press.
- RYMER, R. [1994], Genie: Escape from a Silent Childhood, London, Michael Joseph.
- SAFFRAN, E.M., BERNDT, R.S. e SCHWARTZ, M.F. [1989], The quantitative analysis of agrammatic production: Procedure and data, in "Brain and Languages, 1989, vol. 37, n. 3, pp. 440-479.
- SALISBURY, D.F., SHENTON, M.E., NESTOR, P.G. e MCCARLEY, P. (2002), Semantic bias, bomograph comprehension, and event-related potentials in schizophrenia, in «Clinical Neurophysiology», 2002, p. 113, pp. 383-395.
- SANTENS, P., DE LETTER, M., BORSEL, J., VAN DE REUCK, J. e CAEMAERTC, J. [2003], Lateralized effects of subtbalamic nucleus stimulation on different aspects of speech in Parkinson's disease, in «Brain and Language», 2003, n. 87, pp. 253-258.
- SARA, S.J. [2000], Retrieval and reconsolidation: Toward a neurobiology of remembering, in «Learning Memory», 2000, p. 7, pp. 73-84.
- SARFATI, Y., HARDY-BAYLÉ, M.C., BESCHE, C. e WIDLÖCHER, D. [1997], Attribution of mental states to others in people with schrizophrenia: A non-verbal exploration with comic-strip, in «Schizophrenia Research», 1997, p. 25, pp. 199-209.
- SARFATI, Y., HARDY-BAYLÉ, M.C., BRUNET, E. e WIDLOCHER, D. (1999), Investigation of theory of mind in schropbrenia: Influence of verbalization in disorganized and non-disorganized patients, in «Schizophrenia Research», 1999, n. 37, pp. 183-190.
- SARNO, M.T. [1998], a cura di, Acquired Aphasia, II ed. New York, Academic Press.
 SAUL, J.M. [2002], What is said and psychological
- reality: Grice's project and relevance theorist's criticisms, in «Linguistics and Philosophy», 2002, n. 25, pp. 347-372.
- SAXE, R. [2005], Against simulation: The argument from error, in «Trends in Cognitive Sciences», 2005, vol. 9, n. 4, pp. 174-180.
- SCHACTER, D.L. [1996], Searching for Memory. The Brain, the Mind, and the Past, New York, Basic Books; trad. it. Alla ricerca della memoria. Il cervello, la mente, il passato, Torino, Einaudi, 2001.
- [1997], a cura di, Memory Distortion: How Minds, Brains, and Societies Reconstruct the Past, Cambridge (MA), Harvard University Press.
- SCHARFF, C. e HAESLER, S. [2005], An evolutionary perspective on FoxP2: Strictly for the birds?, in «Current Opinion in Neurobiology», 2005, n. 15, pp. 694-703.
- SCHNIDER, A. [2003], Spontaneous confabulation

- and the adaptation of thought to ongoing reality, in «Nature Reviews Neuroscience», 2003, n. 4,
- pp. 662-671.
 SEARLE, J. [1983], Intentionality: An Essay in the Philosophy of Mind, Cambridge, Cambridge University Press; trad. it. Della intenzionalità, Milano, Bompiani, 1985.
- SEGAL, E.M. [1994], Archeology and cognitive science, in The Ancient Mind. Elements of Cognitive Archaeology, a cura di C. Renfrew e E.B.W. Zubrow, Cambridge, Cambridge University Press.
- SEIDENBERG, M.S. e MACDONALD, M.C. [1999], A probabilistic constraints approach to language acquisition and processing, in «Cognitive Science», 1999, n. 23, pp. 569-588.
- EIDENBERG, M., TANENHAUS, M., LEIMAN, J. e BIENKOWSKI, M. [1982], Automatic access of the meanings of ambiguous words in context. Some limitations of knowledge-based processing, in «Cog-
- nitive Psychology», 1982, n. 14, pp. 489-537. SELZER, A.M., SULLYMN, T.B., CARSYN, M. e TERKELSEN, K.G. [1989], Working with the Person with Schizophrenia, New York, trad. it. Il paziente schizofrenico. L'alleanza terapeutica nel trattamento ospedaliero e ambulatoriale, Milano, Franco Angeli, 1987.
- SHALLICE T. [2001], "Theory of mind" and the prefrontal cortex, in "Brain", 2001, n. 124, pp. 247-248.
 SHALLICE, T. e WARRINGTON, E.K. [1970], Independent functioning of verbal memory stores: A
- pendent functioning of verbal memory stores: A neuropsychological study, in «Quarterly Journal of Experimental Psychology», 1970, n. 22, pp. 261-273.
- SHEEHYA, L.M. e HAINES, M.E. [2004], Crossed Wernicke's aphasia: A case report, in «Brain and Language», 2004, n. 89, pp. 203-206.
- SHIMAMURA, A.P. [1986], Priming effects in amnesia: Evidence for a dissociable memory function, in «Quartely Journal of Experimental Psychology», 1986, n. 38, pp. 619-644.
- SIEGELMANN, H., SONTAG, E. e GILES, C. [1992], The complexity of language recognition by neural networks, in Algorithms, Software, Architecture - Information Processing '92, vol. 1, a cura di J. van Leeuwen, Amsterdam, Elsevier, pp. 329-335.
- SIMÃO, J. [2001], Rewriting the Meaning of Cognitive Adaptation, in «Journal of Adaptive Behavior», 2001, 9, pp. 123-126.
- SIMON, J.C. [1986], Patterns and Operators: The Foundations of Data Representations, New York, McGraw-Hill.
- SIMONE, R. [1989], Fondamenti di linguistica, Roma-Bari, Laterza.
- SINGH, J.A.L. e ZINGG, R.M. [1942], Wolf Children and Feral Man, New York, Harper.
- SKINNER, F.B. [1953], Science and Human Behavior, New York, Macmillan; trad. it. Scienza e comportamento. Milano. Franco Angeli. 1992.

- SMITH, L.B. [1999], Children's noun learning: How general learning processes make specialized learning mechanisms, in The Emergence of Language. a cura di B. MacWhinney, II ed. Mahwah (N]), Lawrence Erlbaum Associates.
- [2000a], Learning bow to learn words: An associativeerane, in Becoming a Word Learner, A debate on Lexical Acquisition, a cura di R.M. Golinkoff e K. Hirsh-Pasek, Oxford, Oxford University Press.
- [2000b], Avoiding associations when it's behaviorism you really bate, in Becoming a Word Learner.
 A Debate on Lexical Acquisition, a cura di R.M. Golinkoff e K. Hirsh-Pasek, Oxford, Oxford UniversityPress.
- SMITH, L., JONES, S., LANDAU, B., GERSHKOFF-STOWE, L. e SAMUELSON, L. (2002), Object name learning provides on-the-job training for attention, in «Psychological Science» 2002, n. 13, pp. 13-19.
- SPEEDIE, L.J., BRAKE, N., FOLSTEIN, S.E., BOWERS, D. e HEILMAN, K.M. [1990], Comprehension of prosody in Huntington' disease, in «Journal of Neurology Neurosurgery and Psychiatry», 1990, n. 53, pp. 607-610.
- SPENCE, S.A., BROOKS, D.J., HIRSCH, S.R., LIDDLE, P.F., MEEHAN, J. e. GRASSY, P.M. [1997], A PET study of yoduntary movement in schizophrenic patients experiencing passivity phenomena (delusions of alien control), in «Brain», 1997, n. 120, pp. 1997-2011.
- SPERBER, D. [2005], Modularity and relevance: How can a massively modular mind be flexible and context-sensitive?, in The Innate Mind Structure and Content, a cura di P. Carruthers, S. Laurence e S. Stich, Oxford, Oxford UniversityPress.
- SPERBER, D. e WILSON, D. [1986], Relevance: Communication and Cognition, Cambridge (MA), Harvard University Press, trad. it. La pertinenza, Milano. Anabasi. 1993.
- SPINKS, R., NOPOULOSA, P., WARD, J., MAGNOTTA, R., FULLERD, V.A. e ANDREASEN, N.C. [2003], Global pallidas volume is related to symptom severity in neuroleptic naive patients with schizophrenia, in «Schizophrenia Research», 2005, n. 73, pp. 229-233.
- SPINNLER, H.B., STERZI, A. e VALLAR, G. [1977], Le amnesie, Milano, Franco Angeli.
- SPOOR, C.F. [1997], Basicranual architecture and relative brain size of STS 5 (Australopithecus af ricanus) and other Plio-Pleistocene hommids, in «South African Journal of Science», 1997, n. 93, pp. 182-186.
- SQUIRE, L.R. [1987], Memory and Brain, Oxford, Oxford UniversityPress.
- [1992], Memory and the hippocampus. A synthesis of findings with rats, monkeys, and humans, in «Psychological Review», 1992, n. 99, pp. 195-231.
- [1993], The organization of declarative and non

- declarative memory, in Brain mechanisms of Perception and Memory: From Neuron to Behavior, a cura di T. Ono, L.R. Squire, M.E. Raichle, D.I. Perrett e M. Fukuda, Oxford, Oxford University Press, pp. 219-227.
- SQUIRE, L.R. e ALVAREZ, P. [1995], Retrograde amnesia and memory consolidation. A neurobiological perspective, in «Current Opinion in Neurobiology», 1995, n. 5, pp. 169-177.
- SQUIRE, L. e SCHACTER, D. [2002], a cura di, The Neuropsychology of Memory, III ed. New York, GuilfordPress.
- S'IANGHELLINI, G. [2006], Psicopatologia del senso comune, Milano, Raffaello Cortina.
- STEINHAUER, K., ALTER, K. e FRIEDERICI, A.D. [1999], Brain potentials indicate immediate use of prosodic cues in natural speech processing, in «Nature Neuroscience». 1999. vol. 2. n. 2. pp. 191-196.
- STEINVORTH, S., LEVINE, B. e CORKIN, S. [2005], Medial temporal lobe structures are needed to re-experience remote autobiographical memories: Euridence from H.M. and W.R., in «Neuropsychologia», 2005, vol. 4. n. 43. pp. 479-496.
- STRANDBURG, R.J., MARSH, J.T., BROWN, W.S., ASAR NOW, R.F., GUTHRE, D., HARPER, R., YEE, C.M. e. NUECHTERLIN, K.M. [1997]. Event-elated potential correlates of linguistic information processing in schizophrenes, in-Biological Psychiatry», 1997, n. 42, pp. 986-608.
- STRINGER, C.B. [1992], Evolution of early humans, in The Cambridge Encyclopedia of Human Evolution, a cura di S. Jones, M. Martin e D. Pilbeam, Cambridge, Cambridge University Press, pp. 241-251.
- STUSS, D.T. e BENSON, D.F. [1986], The Frontal Lobes, New York, Raven.
- STUSS, D.T., PICTON, T.W. e CERRI, A.M. [1986], Searchingforthe mames of pictures: An event-related potential study, in «Psychophysiology», 1986, vol. 2, n. 23, pp. 215-223.
- TALMY, L. [1976], Semantic causative types, in The Grammar of Causative Constructions, a cura di M. Shibatani, New York, Academic Press, pp. 43-116.
- [1983], How language structures space, in Spatial Orientation: Theory, Research and Application, a cura di H.L. Pick e L.P. Acredolo, New York, PlenumPress.
- [2000], Toward a Cognitive Semantics. I: Concept Structuring Systems, Cambridge (MA), MIT Press.
- TAYLOR, I. [1990], Psycholinguistics: Learning and Using Language, London, Prentice-Hall.
- TAYLOR, S. F., LIBERZON, I., DECKER, L.R. e KOEPPE, R.A. [2002]. A functional anatomic study of emotion in schizophrenia, in «SchizophreniaResearch», 2002, n. 58, pp. 159-172.

- THOMPSON, C.K. [2003], Unaccusative verb production in agrammatic aphasia. The argument structure complexity by pothesis, in « Journal of Neurolinguistics», 2003, vol. 16, n. 2-3, pp. 151-167.
- THOMPSON, C.K., LANGE, K.L., SCHNEIDER, S.L. e SHAPIRO, L.P. [1997], Agrammatic and non-braindamaged subjects verb and verbargument structure production, in «Aphasiology», 1997, vol. 11, n. 4-5, pp. 473-490.
- TOMASELLO, M. [1995], Language is not an instinct, in «Cognitive Development», 1995, n. 10, pp. 131-156.
- [1998], Cognitive linguistics, in A Companion to Cognitive Science, a cura di W. Bechtel, Oxford, Blackwell.
- [1999], The Cultural Origins of Human Cognition, Cambridge (MA), Harvard University Press, trad. it. Le origini culturali della cognizione umana, Bologna, Il Mulino, 2005.
- [2003], Constructing a Language: A Usage-based Theory of Language Acquisition, Cambridge (MA), HarvardUniversityPress.
- TOMASELLO, M. e BARTON, M. [1994], Learningwords in non-ostensive contexts, in «Developmental Psychology», 1994, n. 30, pp. 639-650.
 TOMASELLO, M., KRUGER, A. e RATNER, H. [1993],
- Cultural learning, in «Behavioral and Brain Sciences», 1993, n. 16, pp. 495-552.
 Tomasello, M. e Slobin, D. [2005], a cura di, Beyond
- Nature-Nurture: Essays in Honor of Elizabeth Bates, Silver Spring (MD), Lawrence Erlbaum. TOMITA, M. e BUNT, H. [1995]. Current Issues in Pars-
- ing Technology, Dordrecht, Kluwer. TORQUATO, R.D., MINTZ, J. e HWANG, S.S. [2005], MMPI Vulnerability Indicators for Schizophrenia and
- MMPI Vulnerability Indicators for Schizophrenia and Attention Deficit Disorder: UCLA Family Study of Biological Parents of Offspring with Childhood-Onset Schizophrenia or ADHD, in «Behavior Genetics», 2005, vol. 35, n. 2, pp. 159-175.
- TOWNSEND, D.J. e BEVER, T.G. [2001], Sentence Comprehension. The Integration of Habits and Rules, Cambridge (MA), London, MIT Press.
- TULVING, E. [1972], Episodic and semantic memory, in The Organization of Memory, a cura di E. Tulving e D. Donaldson, New York, Academic Press, pp. 381-403.
- [1983], Elements of Episodic Memory, New York, Oxford University Press.
- [1985], How many mery systems are there², in «American Psychologist», 1985, vol. 4, n. 40, pp. 385-398.
- [1986], What kind of hypothesis is the distinction between episodic and semantic memory?, in «Journal of Experimental Psychology: Learning, Memory and Cognition», 1986, vol. 2, n. 12, pp. 307-311.

- [2000], a cura di, Memory, Consciousness, and Brain. The Tallinn Conference, Philadelphia, Psychology Press.
- [2002], Episodic memory From mind to brain, in «Annual Reviews of Psychology», 2002, n. 53, pp.
- TULVING, E. e CRAIK, F.I.M. [2000], a cura di, The Oxford Handbook of Memory, New York, Oxford UniversityPress.
- TULVING, E. e DONALDSON, D. [1972], a cura di, The Organization of Memory, New York, Academic Press.
- TULVING, E. e PEARLSTONE, Z. [1966], Availability versus accessibility of information in memory for words, in «Journal of Verbal Learning and Verbal Behavior». 1966. n. 5. DD. 381-391.
- TULVING, E. e SCHACTER, D.L. [1990], Priming and human memory systems, in «Science», n. 247, pp. 301-306.
- TULVING, E. e THOMSON, D.M. [1973], Encoding specificity and retrieval processes in episodic memory, in «Psychological Review», 1973, n. 80, pp. 352-373.
- TULVING, E. e WATKINS, O.C. [1977], Recognition failure of words with a single meaning, in «Memory and Cognition», 1977, n. 5, pp. 513-522.
- TURING, A. [1948], Intelligent machinery, London, National Physical Laboratory (ora in Collected Works of A.M. Turing: Mechanical Intelligence, a cura di D.C. Ince, Edinburgh University Press, 1969).
- TWAIN, M. [1935], The aweful German language, in The Family Mark Twain, New York, Harper and Row.
 TYE, M. [1995], Ten Problems of Consciousness: A
- Representational Theory of the Phenomenal Mind, Cambridge (MA), MIT Press. — [2000], Cosciousness, Color, and Content, Cam-
- bridge (MA), MIT Press, 2000.
 UEXKULL, J. von [1909], Umwelt und Innenwelt der
- DEXKULL, J. von [1909], Omwelt und Innenwelt der Tiere, Berlin, Springer, 1921.
 VALLAR, G. e BADDELEY, A.D. [1984], Fractionation
- of working memory: Neuropsychological evidence for a phonological short-term store, in «Journal of Verbal Learning and Verbal Behavior», 1984, n. 23, pp. 151-161.
- [1987], Phonological short-term store and sentence processing, in «CognitiveNeuropsychology», 1987, n. 4, pp. 417-438.
- VAN BERKUM, J.J.A., HAGOORT, P. e BROWN, C.M. [1999], Semantic integration in sentences and discourse: Evidence from the N400, in «Journal of Cognitive Neuroscience», 1999, n. 11 (6), pp. 657-667.
- Van Essen, D.C. e Anderson, C. [1990], Information processing strategies and pathways in the primate retina and visual cortex, in An introduc-

- tion to neural and electronic networks, a cura di S.F. Zornetzer, J. Davis e C. Lau, New York, Academic Press.
- VAN PETTEN, C. [1993], A comparison of lexical and sentence-levelcontext effects in event-related potentials Special Issue: Event-related brain potentials in the study of language, in «Language and Cognitive Processes», 1993, vol. 4, n. 8, pp. 485-531.
- [1995], Words and sentences: Event-related brain potential measures, in «Psychophysiology», 1995, n. 32, pp. 511-525.
- VAN PETTEN, C. e KUTAS, M. [1990], Interactions between sentence context and word frequency in event-related brain potentials, in «Memory and Cognition», 1990, n. 18, pp. 380-393.
- [1991], Influences of semantic and syntactic context on open- and closed-class words, in «Memory and Cognition», 1991, n. 19, pp. 95-112.
- VAN PETTEN, C. e RHEINFELDER, H. [1995], Conceptual relationships between spoken words and environmentalsounds Event-related brain potential measures, in «Neuropsychologia», 1995, n. 33, pp. 485-508.
- VAN PETTEN, C. e SENKFOR, A.J. [1996], Memory for words and novel visual patterns: Repetition, recognition, and encoding effects inthe event-related brain potential, in «Psychophysiology», 1996, n. 33, pp. 491-506.
- VAN PETTEN, C., WECKERLY, J., McISAAC, H.K. e KUTAS, M. (1997), Working memory capacity dissociates lexical and sentential context effects, in «Psychological Science», 1997, n. 8, pp. 238-242.
- Vargha-Khadem, F. e Passingham, R.E. [1990], Speech and language defects, in «Nature», 1990, n. 346, p. 226.
- VARGHA-KHADEM, F., WATKINS, K., ALCOCK, K., FLETCHER, P. e PASSINGHAM, R. [1995], Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder, in «Proceedings of the National Academy of Sciences», 1995. n. 92, pp. 930-933.
- VARGHA KHADEM, F., WATKINS, K.E., PRICE, C.J., ASHBURNER, J., ALCOCK, K.J., CONNELLY, A., FRANCKOWIAK, R.S.J., FRISTON, K.J., PEMBREY, M.E., MISHKIN, M., GADIAN, D.G. PASSINGHAM, R.E. [1998], Neural Basis of an Inbertied speech and language disorder, in Proceedings of National Academy of Sciences», 1998, n. 95, pp. 12695-12700.
- VASSALLO, N. [2003], Teoria della conoscenza, Roma-Bari, Laterza.
- VAUGHAN, C.L. [2003], Theories of bipedal walking. An odyssey, in «Journal of Biomechanics», 2003, n. 36, pp. 513-523.
- VELARDI, A. [2005], Il nuovo paradigma. Categorie, prototipi e semantica cognitiva, Messina, EDAS.

- VICO, G.B. [1744], Principi di una Scienza Nuova d'intorno alla comune natura delle nazioni, in Id., Opere filoso fiche, a cura di N. Badaloni, Firenze, 1971, pp. 377-703.
- VILENSKY, J.A. [1987], Locomotor Behavior and Control in Human and Non-Human Primates: Comparisons With Cats and Dogs, in «Neuroscience & Behavioral Review», vol. 11, pp. 263-274.
- VIOLI, P. [1991], Linguaggio, percezione, esperienza il caso della spazialità, in «Versus», n. 59/60, pp. 59-105.
- [1997], Signi ficato e d esperienza, Milano, Bompia-
- VOGELEY, K., BUSSFELD, P., NEWEN, A., HERRMANN, S., HAPPE, F., FALKAI, P., MAIER, W., SHAH, N.J., FINK, G.R. e ZILLES, K. [2001], Mindreading Neural mechanism of theory of mind and self-perspective, in «Neuroimage», 2001, n. 14, pp. 170-181.
- VOGHERA, M. [1992], Sintassi e intonazione nell'italiano parlato, Bologna, Il Mulino.
- VONK, J. e POVINELLI, D. J. [in stampa], Similarity and difference in the conceptual systems of primates: The unobstrudelity bypothesis, in Comparative Cognition: Experimental Explorations of Animal Intelligence, a cura di E.A. Wasserman e T.R. Zentall, Oxford University Press.
- Vos, S. e FRIEDERICI, A.D. [2003], Intersentential syntactic context effects on comprehension. The role of working memory, in «Cognitive Brain Research», 2003, n. 16, pp. 111-122.
- VU, H., KELLAS, G., METCALF, K. e HERMAN, R. [2000]. The influence of globaldiscourse on lexical ambiguity resolution, in «Memory and Cognition», 2000, n. 28, pp. 236-252.
- VU, H., KELLAS, G. e PAUL, S.T. [1998], Sources of sentenceconstraint in lexical ambiguityresolution, in «Memory and Cognition», 1998, n. 26, pp. 979-1001.
- WAGNER, A.D., BUNGE, S.A. e BADRE, D. [2004], Cognitive control, semantic memory, and priming: Contributions from prefrontal cortex, in M.S. Gazzaniga (a cura di), The Cognitive Neurosciences, III ed. Cambridge (MA), MIT Press.
- WALTER, H., ABLER, B., CIARAMIDARO, A. e ERK, S. [2005], Motivating forces of human actions: Neuroimaging reward and social interaction, in «Brain Research Bulletin», 2005, vol. 67, n. 5, pp. 368-381.
- WANDELL, B.A., BREWER, A.A. e DOUGHER, R.F. [2005], Visual field map clusters in human cortex, in «Philosophical transactions of the Royal Society of London», 2005, n. 360, pp. 693-707.
- WARBURTON, E., WISE, R.J., PRICE, C. J., WEILLER, C., HADAR, U., RANSAY, S. e FRACKOWIAK, R.S. [1996], Noun and verb retrieval by normal subjects. Studies with PET, in «Brain», 1996, n. 119, pp. 159-179.

- WARREN, P., GRABE, E. e NOLAN, F. [1995], Prosody, phonology, and parsing in closure ambiguities, in «Language and Cognitive Processes», 1995, n. 10, pp. 457-486.
- WARRINGTON, E. [1975], The selective impairment of semantic memory, in «Quartely Journal of Experimental Psychology», n. 27, pp. 635-657.
- WARRINGTON, E. e SHALLICE, T. [1969], The selective impairment of auditory verbal short-term memory, in «Brain», 1969, n. 92, pp. 855-896.
- WARRINGTON, E.K. e WEISKRANTZ, L. [1970], Amnesic syndrome:Consolidationor retrieval?, in «Nature», 1970, n. 228, pp. 628-630.
- [1978], Further analysis of the prior learning effect in amnesic patients, in «Neuropsychologia», 1978, p. 16, pp. 169-177.
- WEISKRANTZ, L. [1985] (a cura di), Animal Intelligence. Oxford. Clarendon Press.
- WEISMER, G. 11984], Articulatory characteristics of Parkinsonand dysarbria. Segmental and phraseleveltiming, sprantization, and glottal-supraglottal coordination, in The Dysarbrias: Physiologyacoustics-perception Management, a cura di MR. McNeil, J.C. Rosenbek e A. Aronson, San Diego, College-Hill, pp. 101-130.
- [1997], Motor speech disorders, in The Handbook of Phonetic Sciences, a cura di W.J. Hardcastle e J. Laver, Oxford, Blackwell, pp. 191-219.
- WEXLER, P. e MANZINI, R. [1987], Parameters and learnability in binding theory, in Parameter Setting, a cura di T. Roeper e E. Williams, Dordrecht, Reidel, pp. 41-76.
- WHELAN, B.M., MURDOCH, B.E., THEODOROS, D.G., SILBURN, P.A. e HALL, B. [2005], Borrowing from models of motor control to translate cognitive processes: Eudence for hypokinetic hyperkinetic linguistichomologues?, in « Journal of Neurolinguistics», 2005, n. 18, pp. 361-381.
- WHORF, B.L. [1956], Language, Thought, and Reality, in Selected Writings of Benjamin Lee Whorf, a cura di J.B. Carroll, Cambridge (MA), MIT Press; trad. it. Linguaggio, pensiero e realtà, Torino, Bollati Boringhieri, 1970.
- WICKELGREN, W. [1969], Context sensitive coding, associative memory, and serial order in (speech) behavior, in «Psychological Review», 1969, n. 76, pp. 1-15.
- WIKFORSS, Å.M. [2001], Semantic Normativity, in «Philosophical Studies», 2001, vol. 102, n. 2, pp. 203-226.
- WILKINS, W.K. e WAKEFIELD, J. [1995], Brain evolution and neurolinguistic precondition, in «Behavioural and Brain Sciences», 1995, n. 18, pp. 161-226.
- WILLSHAW, D. J. e MALSBURG, C. von der [1976], How patterned neural connections can be set up by self-

- organization, in «Proceedings of the RoyalSociety of London», B, n. 194, pp. 431-445.
- WILSON, B.A. e BADDELEY, A.D. [1988], Semantic, episodic and autohographical memory in a post-meningitic amesic patient, in «Brain and Cognition», 1988, n. 8, pp. 31-46.
- WILSON, B., COCKBURN, J. e BADDELEY, A.D. [1985], The Rivermead Behavioural Memory Test. Thames Valley Test Company, Titchfield, Fareham.
 - WILSON, B.A., EMSLIE, H., FOLEY, J., SHIEL, A., WATSON, P., HAWKINS, K., GROOT, Y. E EVANS, J.J. (2005), The Cambridge Prospective Memory Test (CAMPROMPT), Cambridge, Cognition and Brain Unit.
 - WIMMER, H. e PERNER, J. [1983], Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children's understanding of deception, in «Cognition», 1983, n. 13, pp. 103-128.
 - WITTGENSTEIN, L. [1953], Philosophische Untersuchungen, Oxford, Basil Blackwell; trad. it. Ricerche filosofiche, Torino, Einaudi, 1995.
 - [1958], The Blue and Brown Books. Preliminary Studies for the "Philosophical Investigations", Oxford. Blackwell. 1998.
 - [1967], Zettel, Oxford, Blackwell; trad. it. Zettel,
 - Torino, Einaudi, 1986.

 [1969], Über Gewi ßheit, Oxford, Blackwell; trad. it. Della Certezza, Torino, Einaudi, 1978.
- [1977], Vermischte Bemerkungen, Frankfurt, Suhrkamp; trad. it. Pensieri diversi, Milano, Adel-
- WOOD, B.A. [1992], Evolution of australopithecines, in The Cambridge Encyclopedia of Human Evolution, a cura di S. Jones, M. Martin e D. Pilbeam, Cambridge, Cambridge University Press, pp. 231-240.
- YOUNG, M.P. e RUGG, M.D. [1992], Word frequency and multiple repetition as determinants of the modulation of event-related potentials in a semantic classification task,in «Psychophysiology», 1992, n. 6, pp. 664-676.
- ZADEH, L.A. [1982], A note on prototype theory and fuzzy sets, in «Cognition», 1982, n. 12, pp. 291-297.
- ZHANG, J., WEBB, D.M. ePODLAHA, O. [2002], Accelerated protein evolution and origins of human-specific features: FOXP2 as an example, in «Genetics», 2002, n. 162, pp. 1825-1835.
- ZHOU, C. e RUAN, D.A. [1999], Integration of linguistic and numerical information for biped control, in «Robotics and Autonomous Systems», 1999, n. 28, pp. 53-70.
- ZINGESER, L.B. e BERNDT, R.S. [1990], Retrieval of nours and verbs in agrammatism and anomia, in «Brain and Language», 1990, vol. 39, n. 1, pp. 14-32.

Indice analitico

Indice analitico

abduzione, 53, 54

abilità manipolative, 80-82

bipedismo, 79, 80, 83, 199-202, 210

adeguatezza (osservativa, descrittiva, esplica-

```
causalità, 207, 208
  tiva), 96
                                                   cecità cognitive, 207, 215, 229, 256
afasia di Broca, 68, 222, 225-227, 229-232, 238,
                                                   cervello sociale, 35
  239, 257
                                                   ciclo fonologico, 150
animali non umani, 26-31, 48, 62-67, 71-79, 83,
                                                   coarticolazione, 176, 231
  84, 87-89, 91, 100, 107, 166, 193, 195, 196,
                                                   codifica, 125, 126, 136-138, 140, 142, 151-157,
   198-202, 204, 208, 210, 211, 221
                                                      160, 161, 170, 176, 179-184, 188, 189, 224,
amnesia, 136, 138, 140, 141, 144-146, 149,
   158-160
                                                   coerenza centrale, 249, 250
   pura, 147
                                                   cognizione sociale, 34-36, 60
antropomorfismo, 27, 47, 83
                                                   colori, categorizzazione dei, 47
archeologia cognitiva, 30, 31, 82, 86, 234
                                                   competenza, 99, 101, 102, 104, 122, 130
                                                   componente referenziale, 117, 118, 179, 214,
  del linguaggio, 69, 86, 216, 223
                                                   comportamentismo, 28, 44, 54, 60, 100-102
  di Broca, 68, 81, 82, 84, 216, 220, 222, 223,
                                                   comportamento, 11, 12, 26-28, 32-34, 38, 39-41,
     225, 226, 229-231, 234, 248
                                                      44, 45, 50, 52, 53, 55-57, 65, 69, 71-74, 76,
argomenti, 97, 106, 107, 121, 124, 227
                                                      83-85, 100, 113, 131, 133, 134, 146, 163, 167,
associazionismo, 43, 44, 134, 181, 246
                                                      169, 174, 176, 179-181, 187, 190, 194, 195,
attenzione
                                                      198, 203, 207, 208, 211, 212, 215, 218, 226,
  condivisa o congiunta, 31, 35, 45, 126, 208-
                                                      231, 238, 242, 246, 248, 252, 253, 256
     210, 251, 263, 264
                                                      euritopico, 74
  selettiva, 181
                                                      intelligente, 101, 199, 200
   socializzazione dell', 199, 209
                                                      stenotopico, 74
autismo, 34, 41, 119, 245-249, 252, 254
                                                   computazionalismo, 12, 50, 52-54, 56, 59, 60, 87,
auto-associazione, 179
                                                      95, 163-166, 168-170, 174-178, 182, 183, 187,
                                                      188, 203, 211, 214, 230, 233, 238, 246
                                                   concetti, 11, 23, 24, 30, 46, 54, 56, 58, 59, 81,
backpropagation, 166-168, 170, 171, 179, 180,
                                                      87, 10, 110-113, 115, 136, 138, 141, 144, 161,
   182, 189
```

caratteri specie-specifici, 73, 211 cascata, illusione della, 23

categoria radiale, 113

215, 226, 253, 256

concettualizzazione, 110, 120, 137, 216 condizioni necessarie e sufficienti, 110-112, 120 confabulazione autobiografica, 158-160 connessionismo, 174 conoscenza innata, 28, 102, 103 contenuto intenzionale, 51, 52 non concettuale, 23, 24, 37, 38 continuum lessico-sintassi, 124 core knouledge, 25, 26, 29-31, 53, 202, 203 coscienza, 32, 33, 54-56, 139, 209, 212, 214, 222 d'accesso, 55 fenomenica, 55 costruzzione, 95, 104, 106, 110, 118, 120-129, 161, 215, 254	frames, 114, 126, 159, 209, 224 frequenze formantiche, 63, 74-76, 90 funzionalismo, 51, 52, 56 funzione cognitiva, 22, 23, 47, 70, 72, 80, 85, 86, 90 135, 136, 139, 142, 151, 165, 175, 200, 203 241, 265 comunicativa, 47-49, 77, 89, 209 espressiva del linguaggio, 48, 95, 128, 129 132 fusione concettuale, 118-120 gangli basali, 69, 71, 72, 158, 221, 223, 224, 234 235, 238 glossolalia, 254 GMAP, 181 graded potential, 169
cranio, flessione della base del, 79, 80, 83, 200	grammatica
cura parentale, 199, 203	cognitiva, 93, 110 generativa, 86, 94, 97, 99, 101, 102, 104-107
definizione ostensiva, 43, 44	109, 111, 114, 122-125, 128, 184, 188, 214
dendrite, 165, 167, 169	230
descrizioni definite, 37	universale, 103, 107
determinismo linguistico, 45	
discorso interiore, 49	immaginimentali, 24
diversità psicologica, 27, 28, 202, 203, 253	implicature conversazionali, 40
dualismo	indicale, competenza, 36, 38, 39
delle proprietà, 49, 50	mformation processing, 246
delle sostanze, 49, 50	human information processing, 136
	informazione, 10, 23, 52, 69, 76, 81, 106, 107
embodied cognition, 46	119, 120, 124, 133, 137, 138, 140, 141, 148
emergenza abortita, 213	150, 152, 160, 161, 177, 223, 235, 249, 257
empirismo, 102	265, 267
enfant sauvage, 67, 85, 195-199, 201	innatismo, 22, 28, 34, 44, 48, 66, 67, 72, 73, 77
esecuzione, 99, 101, 104	85, 86, 93, 100-104, 107-109, 125, 131, 133
esistenza, modalità di, 12, 19, 215, 250, 252, 253,	175, 178, 187, 195, 198, 202
255, 257, 258	intelligenza artificiale, 9, 11, 16, 52, 94, 101
evidenza naturale, perdita dell', 252, 253, 256,	164-166, 179
257	intenzioni comunicative, 36, 38, 39, 44, 45, 100
exaptation, 77, 87	
exaptation, 11,01	119, 126, 133, 194
61 1 1 1 22 24	interferenza, 137, 142, 146, 160, 161
falsa credenza, test della, 33, 34	ioide, osso, 75, 78-80
fast mapping, 178, 181, 182	ipotesi simulazionista, 34
FGREP, 180, 189	
filogenesi, 91, 195, 256	lallazione, 66
filosofia	lessico, acquisizione del, 43-45, 95, 126, 187
analitica, 18-20	189
continentale, 18, 19	lettura della mente, 32, 33, 36, 38-41, 126, 129
forma di vita, 208, 250-252, 256	133, 134, 136; vedi anche mentalizzazione
FOXP2, 70-72, 213, 218-221, 224	
1 UAF2, 10-12, 213, 210-221, 224	linguaggio

di programmazione, 164 facoltà del, 62, 87, 88, 133, 175	pertinenza contestuale, 39, 40, 53, 119, 130, 132, 133, 233, 255
ampia, 87, 109	pesi sinaptici, 170
stretta, 87, 109	plasticità neuronale, 161, 167, 169, 170, 179
patologie del, 194, 213, 216, 218, 256	265, 267
schizofrenico, 245	Pot, 81-83
ocomozione bipede, ved i bipedismo	potenziali evocati, 142, 226, 227, 235, 258, 261, 263-266
memoria, 99, 101, 112, 119, 125, 135-161, 165,	priming, 141, 142
185, 186, 189, 207	priorità linguistica, tesi della, 20-24, 32, 47
semantica, 136, 138-146, 155-157	priorità mentale, tesi della, 21-24, 32, 47, 136
mentalizzazione, 31, 33, 35, 36, 38-41, 44, 45,	processo
126, 133, 134, 247; vedi anche lettura della	auto-organizzante, 171, 180
mente	di comprensione, 109, 110, 116, 118, 190,
mente	235
fenomenica, 55	programma minimalista, 25, 87, 105, 107, 109
naturalizzazione della, 56, 58-60	proprietà emergente, 12, 194, 203, 209-215, 231,
psicologica, 55	232, 241, 244, 245, 256, 257
metafora, 39-41, 47, 51, 81, 111, 115, 116, 118-	prototipicità, 44, 96, 112-114
120, 130, 131, 134, 145, 174, 231	psicologia
metodi di addestramento non supervisionati,	computazionale, 52, 54, 56, 59
170, 180	del senso comune, 33, 41
Modello cognitivo idealizzato, 113	ingenua, 33
	psicopatologie del linguaggio, 12, [136,] 214.
modulari, capacità, 26, 31 modularismo, 53, 203, 211-215, 231	218, 242, 250, 252, 253, 256, 257
modulo comportamentale, 74	
morfologia, 94, 137, 176, 178, 179, 215	rappresentazione
mutamento (o evoluzione) strutturale e funzio-	dello spazio, 47
nale, 85, 89-91, 194, 202, 203	multimodale, 81, 82
	razionalità, principio di, 57, 58
network, 127, 128, 174, 236, 241	recupero, 124, 130, 136-138, 140, 145, 146, 153
di revisione e integrazione, 235	157, 159, 161
sintattico-lessicale, 235	Regole a Struttura Sintagmatica, 98, 100, 104
neurocomputazionalismo, 165, 174, 175, 182	106
nozioni numeriche, 29, 46, 89	reti ricorsive, 184, 185, 188
	riconoscimento, 9, 24, 25, 75, 81, 141, 148, 153
oggetti occlusi, permanenza degli, 24, 28, 29	154, 156, 161, 183, 207, 234, 235, 258
ontogenesi, 69, 80, 88, 91, 195, 199, 200, 202,	ricorsività, 87, 100, 101, 108, 109, 183-185
210, 221, 244, 256	rievocazione, 141, 146, 152-154, 156-158
over-regularization, 176	ritenzione, 136, 137, 149
paleoantropologia, 30, 61, 62, 74, 78, 79, 83, 85,	schema d'immagine, 116
86, 88, 90	schizofrenia, 41, 201, 214, 215, 218, 242-258
paleoneurologia, 78, 80, 82, 83, 86	fenotipo della, 242
percettrone, 168, 177, 179-182, 184	scienze cognitive, 9-12, 16, 19, 21-23, 30, 49
percezione 10 23 29 32 44.47 62 63 69 103	51.56 58 59 61 103 163 165 175 187

193, 209, 214, 218, 226, 231, 235, 244, 256,

257, 266

133, 136, 138, 142, 151, 153, 179, 225, 248,

265, 267, 270

308 INDICE ANALITICO

secondo «salto», 257 segregazione modulare, 211, 212 selezione culturale, 91 semantica generativa, 105, 110 shapebias, 181, 182 significato, aspetto normativo insito nel, 54, 56, 59 sintagma, 97, 98, 100, 101, 106, 107, 127 socialità, 30, 35, 207, 209, 210, 246 sociogenesi, 91, 195, 256 SOM, 171, 174, 180, 181 sordità profonda, 216 spazio mentale, 117 spiking nettuorika, 174 stazza, aumento della, 75, 76	teleonomia, 84 teoria dei principi e parametri, 103, 107 della mente, 33, 34, 41, 119, 207, 209, 211, 214, 246-248, 250, 252 innatista, vedi innatismo non selezionista, 77 rappresentazionale-computazionale della mente, 50; vedi anche computazionalismo selezionista, 85, 87 testa, 97, 106, 107, 230 trascioratio, 136, 107, 230 trasciorazioni, 104 tratto vocale sopralaringeo, 64, 79, 87, 90, 200, 210, 213, 221, 224, 231, 232, 251
stimolo, argomento della povertà dello, 102, 125	uso, sintassi basata sull', 122, 126, 132
struttura profonda, 104, 105, 225, 229, 230, 233, 234	valenza. 106
superficiale, 104, 105, 229, 230 svantaggio evolutivo, 65, 90, 200	vantaggio evolutivo, 49, 65, 76, 88, 90, 108, 207, 257
svaltaggio evolutivo, 63, 50, 200 svolta	ventaglio corticale, 83, 84
cognitiva, 21, 22, 31	verbi
linguistica, 16, 17, 19-21, 47, 214 mentalistica, 21, 22, 31	grammaticali, 227 lessicali, 227 vocabularyspurt, 143, 178, 179, 181
taccuino visuo-spaziale, 150	volti, riconoscimento dei, 26, 29